
INSTITUTE OF THEORETICAL INFORMATICS, RESEARCH GROUP PARALLEL COMPUTING

Parallel Graph Algorithms on the

Xeon Phi Coprocessor
Master Thesis presentation

Dennis Felsing | 2015-09-07

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

http://www.kit.edu

Motivation: Graphs

Complex Network: graph with non-trivial topology

Occur in social networks, cell biology, the internet...

Map of the Internet, http://www.opte.org/maps/

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 2/16

http://www.opte.org/maps/

Motivation: Graphs

Complex Network: graph with non-trivial topology

Occur in social networks, cell biology, the internet...

We consider two existing algorithms:

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 2/16

Motivation: Graphs

Complex Network: graph with non-trivial topology

Occur in social networks, cell biology, the internet...

We consider two existing algorithms:

Graph Generation

Create realistic complex networks with

generator and parameters

Preserves privacy and confidentiality

No need to transfer big data

Scale to smaller and bigger graphs

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 2/16

Motivation: Graphs

Complex Network: graph with non-trivial topology

Occur in social networks, cell biology, the internet...

We consider two existing algorithms:

Graph Generation

Create realistic complex networks with

generator and parameters

Preserves privacy and confidentiality

No need to transfer big data

Scale to smaller and bigger graphs

Graph Drawing

Lay out graph visually,

mainly for human perception

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 2/16

Motivation: Computation

Data sets grow fast: Internet size doubles every 5 years

Clock frequency of processors stagnated in last decade

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 3/16

Motivation: Computation

Data sets grow fast: Internet size doubles every 5 years

Clock frequency of processors stagnated in last decade

Instead more parallelism in processors

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 3/16

Motivation: Computation

Data sets grow fast: Internet size doubles every 5 years

Clock frequency of processors stagnated in last decade

Instead more parallelism in processors

Modern GPUs as even more parallel alternative:

Massively parallel, thousands of cores

Large performance increases with more parallelization

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 3/16

Motivation: Computation

Data sets grow fast: Internet size doubles every 5 years

Clock frequency of processors stagnated in last decade

Instead more parallelism in processors

Modern GPUs as even more parallel alternative:

Massively parallel, thousands of cores

Large performance increases with more parallelization

General purpose programming more difficult

Graph algorithms with irregular data access challenging

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 3/16

Motivation: Computation

Data sets grow fast: Internet size doubles every 5 years

Clock frequency of processors stagnated in last decade

Instead more parallelism in processors

Modern GPUs as even more parallel alternative:

Massively parallel, thousands of cores

Large performance increases with more parallelization

General purpose programming more difficult

Graph algorithms with irregular data access challenging

Intel Xeon Phi as alternative to the alternative:

60 cores, more than a CPU, fewer than a GPU

Similar to program as CPU

Viable choice for graph algorithms?

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 3/16

Motivation: Computation

Data sets grow fast: Internet size doubles every 5 years

Clock frequency of processors stagnated in last decade

Instead more parallelism in processors

Modern GPUs as even more parallel alternative:

Massively parallel, thousands of cores

Large performance increases with more parallelization

General purpose programming more difficult

Graph algorithms with irregular data access challenging

Intel Xeon Phi as alternative to the alternative:

60 cores, more than a CPU, fewer than a GPU

Similar to program as CPU

Viable choice for graph algorithms?

⇒ Port two graph algorithms to Xeon Phi

and evaluate the porting and their performance

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 3/16

Overview

1 Xeon Phi Coprocessor

Hardware Architecture

Programming

2 Generation of Massive Complex Networks

Algorithm

Results

3 Graph Drawing using Graph Clustering

Algorithm

Results

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 4/16

Xeon Phi: Hardware Architecture

Xeon Phi 5110P used, 60 in-order cores at 1 GHz

Simple cores based on original Pentium design from 1994

Augmented with 64-bit support (not x86-64)

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 5/16

Xeon Phi: Hardware Architecture

Xeon Phi 5110P used, 60 in-order cores at 1 GHz

Simple cores based on original Pentium design from 1994

Augmented with 64-bit support (not x86-64)

Host System Accelerator Card

Name 2× Xeon E5-2680 Xeon Phi 5110P

Release Date 2012 2012

Clock Frequency 2.7 GHz 1.05 GHz

Cores 2 × 8 (32 threads) 60 (240 threads)

RAM Capacity 256 GB 8 GB

RAM Bandwidth 51 GB/s 320 GB/s

SIMD Instructions MMX, SSE, AVX (256 bit) IMCI (512 bit)

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 5/16

Xeon Phi: Hardware Architecture

Xeon Phi 5110P used, 60 in-order cores at 1 GHz

Simple cores based on original Pentium design from 1994

Augmented with 64-bit support (not x86-64)

Host System Accelerator Card

Name 2× Xeon E5-2680 Xeon Phi 5110P

Release Date 2012 2012

Clock Frequency 2.7 GHz 1.05 GHz

Cores 2 × 8 (32 threads) 60 (240 threads)

RAM Capacity 256 GB 8 GB

RAM Bandwidth 51 GB/s 320 GB/s

SIMD Instructions MMX, SSE, AVX (256 bit) IMCI (512 bit)

⇒ Parallelization and vectorization necessary to reach high performance

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 5/16

Xeon Phi: Hardware Architecture

Xeon Phi 5110P used, 60 in-order cores at 1 GHz

Simple cores based on original Pentium design from 1994

Augmented with 64-bit support (not x86-64)

2000

Intel Xeon Phi coprocessor Peak

Intel Xeon processor Peak

Sample X
eon P

hi p
erf.

P
e
rf

o
rm

a
n

c
e
 [

G
F

L
O

P
S

]

Threads

200

400

600

800

1000

1200

1400

1600

1800

0

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116

S
a
m

p
le

 X
e
o
n
 p

e
rf
.

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 5/16

Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization (Multiple Instruction Multiple Data) methods:

OpenMP

OpenMP Offloading

Cilk Plus

Threading Building Blocks

MPI

Vectorization (Single Instruction Multiple Data) methods

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 6/16

Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization (Multiple Instruction Multiple Data) methods:

OpenMP

❢❧♦❛t a[MAX], b[MAX], c[MAX];

❢♦r (i = 0; i < MAX; i++)

c[i] = a[i] + b[i];

OpenMP Offloading

Cilk Plus

Threading Building Blocks

MPI

Vectorization (Single Instruction Multiple Data) methods

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 6/16

Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization (Multiple Instruction Multiple Data) methods:

OpenMP

❢❧♦❛t a[MAX], b[MAX], c[MAX];

#pragma omp parallel for

❢♦r (i = 0; i < MAX; i++)

c[i] = a[i] + b[i];

OpenMP Offloading

Cilk Plus

Threading Building Blocks

MPI

Vectorization (Single Instruction Multiple Data) methods

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 6/16

Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization (Multiple Instruction Multiple Data) methods:

OpenMP

OpenMP Offloading

❢❧♦❛t a[MAX], b[MAX], c[MAX];

#pragma offload target(mic) in(a, b) out(c)

{

#pragma omp parallel for

❢♦r (i = 0; i < MAX; i++)

c[i] = a[i] + b[i];

}

Cilk Plus

Threading Building Blocks

MPI

Vectorization (Single Instruction Multiple Data) methods

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 6/16

Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization (Multiple Instruction Multiple Data) methods:

OpenMP

OpenMP Offloading

❢❧♦❛t a[MAX], b[MAX], c[MAX];

#pragma offload target(mic:0) in(a, b) out(c) signal(c)

{

#pragma omp parallel for

❢♦r (i = 0; i < MAX; i++)

c[i] = a[i] + b[i];

}

#pragma offload_wait target(mic:0) wait(c)

Cilk Plus

Threading Building Blocks

MPI

Vectorization (Single Instruction Multiple Data) methods

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 6/16

Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization (Multiple Instruction Multiple Data) methods

Vectorization (Single Instruction Multiple Data) methods:

Manual Vectorization: c = mm512 add ps(a, b)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4

9 9

+

=

a

b

c

32 bits (float)

512 bits

Auto-Vectorization

Cilk Plus

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 6/16

Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization (Multiple Instruction Multiple Data) methods

Vectorization (Single Instruction Multiple Data) methods:

Manual Vectorization: c = mm512 add ps(a, b)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4

9 9

+

=

a

b

c

32 bits (float)

512 bits

Auto-Vectorization

Cilk Plus

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 6/16

Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization (Multiple Instruction Multiple Data) methods

Vectorization (Single Instruction Multiple Data) methods:

Manual Vectorization: c = mm512 add ps(a, b)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4

9 9

+

=

a

b

c

32 bits (float)

512 bits

Auto-Vectorization

Cilk Plus

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 6/16

Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization (Multiple Instruction Multiple Data) methods

Vectorization (Single Instruction Multiple Data) methods:

Manual Vectorization: c = mm512 add ps(a, b)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4

9 9

+

=

a

b

c

32 bits (float)

512 bits

Auto-Vectorization

Cilk Plus

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 6/16

Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization (Multiple Instruction Multiple Data) methods

Vectorization (Single Instruction Multiple Data) methods:

Manual Vectorization: c = mm512 add ps(a, b)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4

9 9

+

=

a

b

c

32 bits (float)

512 bits

Auto-Vectorization

Cilk Plus

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 6/16

Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization (Multiple Instruction Multiple Data) methods

Vectorization (Single Instruction Multiple Data) methods:

Manual Vectorization

Auto-Vectorization

❢❧♦❛t a[MAX] __attribute__((aligned(64)));

❢❧♦❛t b[MAX] __attribute__((aligned(64)));

❢❧♦❛t c[MAX] __attribute__((aligned(64)));

#pragma simd

❢♦r (i = 0; i < MAX; i++)

c[i] = a[i] + b[i];

Cilk Plus

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 6/16

Network Generation: Algorithm

Desired properties of a complex network:

Scale-Free: No typical vertex degree

⇒ Degree distribution follows power law

101 102 103

10−8

10−6

10−4

10−2

100

degree

fr
a

c
ti
o

n
o

f
ve

rt
ic

e
s

power-law: x−2.8

exponential: 2e−0.6x

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 7/16

Network Generation: Algorithm

Desired properties of a complex network:

Scale-Free: No typical vertex degree

⇒ Degree distribution follows power law

Small-World: All nodes connected by short paths

p = 0 p = 1
Increasing randomness

Regular Small-world Random

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 7/16

Network Generation: Algorithm

Desired properties of a complex network:

Scale-Free: No typical vertex degree

⇒ Degree distribution follows power law

Small-World: All nodes connected by short paths

⇒ Generator using hyperbolic geometry performs well in both properties

Spherical Euclidean Hyperbolic

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 7/16

Network Generation: Algorithm

Exponential expansion of space in hyperbolic geometry:

Area of circle grows exponentially with distance from center

⇒ Natural embedding of graphs with tree-like structure

⇒ May also be good for generating graphs

M.C. Escher: Circle Limit IV
Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 8/16

Network Generation: Algorithm

Exponential expansion of space in hyperbolic geometry:

Area of circle grows exponentially with distance from center

⇒ Natural embedding of graphs with tree-like structure

⇒ May also be good for generating graphs

Hyperbolic generator: Distribute vertices in hyperbolic plane

Edge when two vertices are close to each other (hyperbolic circle)

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 8/16

Network Generation: Algorithm

Exponential expansion of space in hyperbolic geometry:

Area of circle grows exponentially with distance from center

⇒ Natural embedding of graphs with tree-like structure

⇒ May also be good for generating graphs

Hyperbolic generator: Distribute vertices in hyperbolic plane

Edge when two vertices are close to each other (hyperbolic circle)

Poincaré disk model: Mapping to Euclidean unit disk

⇒ Neighborhood transformed to Euclidean circle

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 8/16

Network Generation: Algorithm

Exponential expansion of space in hyperbolic geometry:

Area of circle grows exponentially with distance from center

⇒ Natural embedding of graphs with tree-like structure

⇒ May also be good for generating graphs

Hyperbolic generator: Distribute vertices in hyperbolic plane

Edge when two vertices are close to each other (hyperbolic circle)

Poincaré disk model: Mapping to Euclidean unit disk

⇒ Neighborhood transformed to Euclidean circle

Polar quadtree: Efficiently determine neighborhood

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 8/16

Network Generation: Algorithm

Exponential expansion of space in hyperbolic geometry:

Area of circle grows exponentially with distance from center

⇒ Natural embedding of graphs with tree-like structure

⇒ May also be good for generating graphs

Hyperbolic generator: Distribute vertices in hyperbolic plane

Edge when two vertices are close to each other (hyperbolic circle)

Poincaré disk model: Mapping to Euclidean unit disk

⇒ Neighborhood transformed to Euclidean circle

Polar quadtree: Efficiently determine neighborhood

⇒ Subquadratic running time O((n3/2 + m) log n)

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 8/16

Network Generation: Implementation

Implementation part of NetworKit, high level C++11 code

NetworKit ported to Intel C++ compiler 15.0 and Xeon Phi

Working around compiler restrictions and bugs with constexprs,

implicit conversions, null pointers, the standard library, and function

traits on lambdas

Three execution modes implemented and tested:

No offloading: Entire code runs on Xeon Phi, not enough memory

Full offloading: Offload parts of the calculation, keep results in

memory of host system

Partial offloading: Offload part of the calculation, other part on the

host system

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 9/16

Network Generation: Results

Many memory allocations during algorithm to create dynamically

sized lists of neighbors

Allocations (malloc) are locking in default C library glibc

On Xeon Phi more threads run in parallel than on CPU, so more

allocations block each other

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 10/16

Network Generation: Results

Many memory allocations during algorithm to create dynamically

sized lists of neighbors

Allocations (malloc) are locking in default C library glibc

On Xeon Phi more threads run in parallel than on CPU, so more

allocations block each other

⇒ Use non-locking allocations of Intel’s Threading Building Blocks

Scaling of initial implementation:

1 2 4 8 15 30 60 120 240

0

10

20

30

threads

s
p

e
e

d
u

p
fa

c
to

r

TBB malloc

glibc malloc

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 10/16

Network Generation: Results

Many memory allocations during algorithm to create dynamically

sized lists of neighbors

Allocations (malloc) are locking in default C library glibc

On Xeon Phi more threads run in parallel than on CPU, so more

allocations block each other

⇒ Use non-locking allocations of Intel’s Threading Building Blocks

⇒ Reduce number of (re)allocations by reusing memory and preallocating

expected size

Scaling of initial implementation:

1 2 4 8 15 30 60 120 240

0

10

20

30

threads

s
p

e
e

d
u

p
fa

c
to

r

TBB malloc

glibc malloc

Scaling of final, optimized code:

1 2 4 8 15 30 59 118 236

0

50

100

threads

s
p

e
e

d
u

p
fa

c
to

r

TBB malloc

glibc malloc

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 10/16

Network Generation: Results

Tuning parameters of the algorithm:

Capacity: Maximum number of vertices in a leaf cell before split

Balance: Share of area in outer children when splitting

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 11/16

Network Generation: Results

Tuning parameters of the algorithm:

Capacity: Maximum number of vertices in a leaf cell before split

Balance: Share of area in outer children when splitting

0.1 0.3 0.5 0.7 0.90.99

2

4

6

8

balance

ru
n

n
in

g
ti
m

e
[s

]

capacity 128

capacity 1024

⇒ Imbalanced quadtree with greater space to outer children

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 11/16

Network Generation: Results

Transferring parts of graph back to host system is slow

⇒ Double Buffering on Phi and host

Buffering for full offloading:

210 212 214 216 218 220

0

20

40

vertices

ru
n

n
in

g
ti
m

e
[s

]

single buffer

double buffer

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 12/16

Network Generation: Results

Transferring parts of graph back to host system is slow

⇒ Double Buffering on Phi and host

Buffering for full offloading:

210 212 214 216 218 220

0

20

40

vertices

ru
n

n
in

g
ti
m

e
[s

]

single buffer

double buffer

Offloading comparison:

0 0.5 1 1.5 2

·106

0

0.5

1

1.5

2

2.5

·104

vertices

ru
n

n
in

g
ti
m

e
[s

]

full offload

no offload

partial offload

⇒ With many optimizations similar speed as dual Xeon, but not faster

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 12/16

Graph Drawing: Algorithm

We assume to have graphs with predefined target edge lengths

Full Stress Model: Physical springs connecting all pairs of vertices

Maxent-Stress Model: Minimize stress, maximize entropy:

M(x) =
∑

{u,v}∈E

weight factor
︷︸︸︷
wuv (||xu − xv || −

target edge length
︷︸︸︷

duv)2

︸ ︷︷ ︸

stress for target edge lengths

−α

∑

{u,v}/∈E

ln ||

coordinate vector
︷︸︸︷
xu −xv ||

︸ ︷︷ ︸

entropy for rest

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 13/16

Graph Drawing: Algorithm

We assume to have graphs with predefined target edge lengths

Full Stress Model: Physical springs connecting all pairs of vertices

Maxent-Stress Model: Minimize stress, maximize entropy:

M(x) =
∑

{u,v}∈E

weight factor
︷︸︸︷
wuv (||xu − xv || −

target edge length
︷︸︸︷

duv)2

︸ ︷︷ ︸

stress for target edge lengths

−α

∑

{u,v}/∈E

ln ||

coordinate vector
︷︸︸︷
xu −xv ||

︸ ︷︷ ︸

entropy for rest

Multilevel Maxent-Stress Algorithm:
Minimize maxent-stress by clustering graph in multiple levels of

hierarchy

Contract clusters into new supervertices

Iteratively solve maxent-stress on each finer level

⇒ Parallelizes well

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 13/16

Graph Drawing: Results

Preliminary implementation of multilevel maxent-stress graph

drawing algorithm

Parallelized with OpenMP

Graphs of interest (< 107 edges) easily fit into Xeon Phi memory

⇒ No expensive offloading necessary

Source code libraries had to be fixed for ICPC

No major dynamic allocations in algorithm

⇒ Intel TBB’s malloc has small effect

Inner loop vectorizes well when isolated: speedup factor 7.0

Smaller effect when embedded in real program

⇒ Other calculations at same time, hyper-threading, memory

connection busy

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 14/16

Graph Drawing: Results

Graph n m Description Phi Host

nyc 264 346 365 050 Road Network 960.0 1845.9

luxembourg 114 599 119 666 Road Network 89.5 166.5

commanche 7920 11 880 Helicopter Mesh 2.6 3.5

rajat06 10 922 18 061 Circuit Simulation 3.5 4.5

delaunay n15 32 768 98 274 Delaunay Triangulation 7.8 9.0

rgg n 2 15 s0 32 768 160 240 Random Graph 5.3 3.6

1 2 4 8 15 30 60 120 240

0

50

100

threads on Xeon Phi

s
p

e
e

d
u

p
fa

c
to

r

luxembourg

commanche

rajat06

delaunay n15

rgg n 2 15 s0

All graphs small enough to fit into

Xeon Phi memory

⇒ Executed on Xeon Phi directly

Good speedup for large sparse

graphs

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 15/16

Conclusion and Outlook

Complex algorithms and their framework/libraries ported to Xeon Phi

Good scaling in both algorithms on Xeon Phi

Offloading large amounts of data too expensive

Graph drawing algorithm outperforms two-socket Intel Xeon system,

especially on sparse graphs

Future Research: Direct comparison between graph algorithms on

GPU and Xeon Phi

New Xeon Phi “Knights Landing” this year with modern cores and

384 GB of memory

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 16/16

[Appendix] Xeon Phi: Layout Overview

CRI CRI CRI CRI

TD TD TD TD

TDTDTDTD

CRICRICRICRI

PCIe

client

logic

GDDR

MC

GDDR

MC

GDDR

MC

GDDR

MC

Core

L2

Core

L2

Core

L2

Core

L2

L2

Core

L2

Core

L2

Core

L2

Core

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 17/16

[Appendix] Xeon Phi: Core Pipeline

32KiB L1 Instruction Cache

Instruction Decode

Execution Pipe 0 Execution Pipe 1

X87
VPU

512b SIMD
Scalar

32KiB L1 Data Cache

5
1

2
K

iB
L

2
C

a
c
h

e

C
o

re
R

in
g

In
te

rc
o

n
n

e
c
t

T
a

g
D

ir
e

c
to

ry

Thread 1 Thread 2 Thread 3 Thread 4

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 18/16

[Appendix] Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization methods:

OpenMP

OpenMP Offloading

Cilk Plus

Threading Building Blocks

MPI

Vectorization (Single Instruction Multiple Data) methods

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 19/16

[Appendix] Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization methods:

OpenMP

❢❧♦❛t a[MAX], b[MAX], c[MAX];

❢♦r (i = 0; i < MAX; i++)

c[i] = a[i] + b[i];

OpenMP Offloading

Cilk Plus

Threading Building Blocks

MPI

Vectorization (Single Instruction Multiple Data) methods

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 19/16

[Appendix] Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization methods:

OpenMP

❢❧♦❛t a[MAX], b[MAX], c[MAX];

#pragma omp parallel for

❢♦r (i = 0; i < MAX; i++)

c[i] = a[i] + b[i];

OpenMP Offloading

Cilk Plus

Threading Building Blocks

MPI

Vectorization (Single Instruction Multiple Data) methods

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 19/16

[Appendix] Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization methods:

OpenMP

OpenMP Offloading

❢❧♦❛t a[MAX], b[MAX], c[MAX];

#pragma offload target(mic) in(a, b) out(c)

{

#pragma omp parallel for

❢♦r (i = 0; i < MAX; i++)

c[i] = a[i] + b[i];

}

Cilk Plus

Threading Building Blocks

MPI

Vectorization (Single Instruction Multiple Data) methods

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 19/16

[Appendix] Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization methods:

OpenMP

OpenMP Offloading

❢❧♦❛t a[MAX], b[MAX], c[MAX];

#pragma offload target(mic:0) in(a, b) out(c) signal(c)

{

#pragma omp parallel for

❢♦r (i = 0; i < MAX; i++)

c[i] = a[i] + b[i];

}

#pragma offload_wait target(mic:0) wait(c)

Cilk Plus

Threading Building Blocks

MPI

Vectorization (Single Instruction Multiple Data) methods

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 19/16

[Appendix] Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization methods:

OpenMP

OpenMP Offloading

Cilk Plus

❢❧♦❛t a[MAX], b[MAX], c[MAX];

cilk_for (i = 0; i < MAX; i++)

c[i] = a[i] + b[i];

Threading Building Blocks

MPI

Vectorization (Single Instruction Multiple Data) methods

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 19/16

[Appendix] Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization methods:

OpenMP

OpenMP Offloading

Cilk Plus

Threading Building Blocks

❢❧♦❛t a[MAX], b[MAX], c[MAX];

parallel_for(s✐③❡❴t(0), MAX, s✐③❡❴t(1), [=](s✐③❡❴t i) {

c[i] = a[i] + b[i];

});

MPI

Vectorization (Single Instruction Multiple Data) methods

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 19/16

[Appendix] Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization methods

Vectorization (Single Instruction Multiple Data) methods:

Manual Vectorization: c = mm512 add ps(a, b)
1 #include <immintrin.h>

2 ❢❧♦❛t a[MAX] __attribute__((aligned(64)));

3 ❢❧♦❛t b[MAX] __attribute__((aligned(64)));

4 ❢❧♦❛t c[MAX] __attribute__((aligned(64)));

5 __m512 _a, _b, _c;

6 ❢♦r (i = 0; i < MAX; i += 16) {

7 _a = _mm512_load_ps(&a[i]);

8 _b = _mm512_load_ps(&b[i]);

9 _c = _mm512_add_ps(_a, _b);

10 _mm512_store_ps(&c[i], _c);

11 }
Auto-Vectorization

Cilk Plus

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 19/16

[Appendix] Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization methods

Vectorization (Single Instruction Multiple Data) methods:

Manual Vectorization

Auto-Vectorization

❢❧♦❛t a[MAX] __attribute__((aligned(64)));

❢❧♦❛t b[MAX] __attribute__((aligned(64)));

❢❧♦❛t c[MAX] __attribute__((aligned(64)));

#pragma simd

❢♦r (i = 0; i < MAX; i++)

c[i] = a[i] + b[i];

Cilk Plus

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 19/16

[Appendix] Xeon Phi: Programming

Presented as a regular computer, stripped down Linux, SSH

Parallelization methods

Vectorization (Single Instruction Multiple Data) methods:

Manual Vectorization

Auto-Vectorization

Cilk Plus

❢❧♦❛t a[MAX] __attribute__((aligned(64)));

❢❧♦❛t b[MAX] __attribute__((aligned(64)));

❢❧♦❛t c[MAX] __attribute__((aligned(64)));

c[i:MAX] = a[i:MAX] + b[i:MAX];

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 19/16

[Appendix] Preliminaries: Graphs

Graph G = (V ,E) consists of

Set of vertices V

Set of edges E ⊆ V × V

Edge e = (u, v) ∈ E : connection

from source u to target v

Number of vertices n = |V |

Number of edges m = |E |

Undirected graphs only: (u, v) ∈ E iff (v , u) ∈ E

Neighborhood N(u) = {v : (u, v) ∈ E}

Loop (u, u) ∈ E

Degree deg(v): number of incident edges, counting loops twice

Distance: number of edges in shortest path connecting vertices

Diameter d : greatest distance between any pair of vertices

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 20/16

[Appendix] Network Generation: Results

OpenMP Scheduling:

Compact thread affinity
CPU

Core 0

HT0 HT1 HT2 HT3

Core 1

HT0 HT1 HT2 HT3

0 1 2 3

Scatter thread affinity
CPU

Core 0

HT0 HT1 HT2 HT3

Core 1

HT0 HT1 HT2 HT3

0 3 1 2

Balanced thread affinity
CPU

Core 0

HT0 HT1 HT2 HT3

Core 1

HT0 HT1 HT2 HT3

0 1 2 3

⇒ Scatter and balanced 1.4 times faster

Dennis Felsing – Parallel Graph Algorithms on the Xeon Phi Coprocessor 2015-09-07 21/16

	Xeon Phi Coprocessor
	Hardware Architecture
	Programming

	Generation of Massive Complex Networks
	Algorithm
	Results

	Graph Drawing using Graph Clustering
	Algorithm
	Results

