
Parallel Graph Algorithms

on the Xeon Phi Coprocessor

Master Thesis of

Dennis Felsing

At the Department of Informatics

Institute of Theoretical Computer Science

Parallel Computing Group

Reviewer: Juniorprof. Dr. Henning Meyerhenke

Advisor: Moritz von Looz

Duration: 2015-02-20 – 2015-08-19

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

I declare that I have developed and written the enclosed thesis completely by my-
self, and have not used sources or means without declaration in the text, and have
followed the rules of the KIT for upholding good scientific practise.

Karlsruhe, 2015-08-19

. .
(Dennis Felsing)

Abstract

Complex networks have received interest in a wide area of ap-
plications, ranging from road networks over hyperlink connec-
tions in the world wide web to interactions between people.
Advanced algorithms are required for the generation as well as
visualization of such graphs.
In this work two graph algorithms, one for graph generation, the
other for graph visualization, are studied exemplarily. We detail
the work of adapting and porting the algorithms to the Intel
Xeon Phi coprocessor architecture. Problems in porting real
software projects and used libraries are encountered and solved.
Memory allocations turned out to be a major problem for the
graph generation algorithm. The limited memory of the Xeon
Phi forced us to offload chunks of the data from the host system
to the Xeon Phi, which impeded performance, eliminating any
significant speedup.
The data sets consisting of at most 365 000 edges for the graph
visualization algorithm fit into the Xeon Phi’s memory easily,
which simplified the porting process significantly. We achieve a
speedup for sparse graphs over the host system containing two
8-core Intel Xeon (Sandy Bridge) processors. While the hot
inner loop by itself can utilize the 512-bit vector instructions
of the Xeon Phi, the benefit disappears when embedded in the
more complicated full program.

Zusammenfassung

Komplexe Netzwerke finden in vielen Bereichen Anwendung,
von Straßennetzen über Hyperlink-Verbindungen im World
Wide Web bis zu Interaktionen zwischen Personen. Mod-
erne und komplexe Algorithmen werden benötigt um derartige
Graphen sowohl zu generieren als auch zu visualisieren.
In dieser Masterarbeit werden zwei Graphalgorithmen ex-
emplarisch analysiert, einer zur Graphgenerierung, der an-
dere zur Graphvisualisierung. Auf den Prozess der Adaption
und Portierung der Algorithmen auf den Xeon Phi Koprozes-
sor gehen wir dabei genauer ein. Probleme treten bei der
Portierung existierender Softwareprojekte und ihrer benutzten
Libraries auf und wir beschreiben deren Behebung.

Acknowledgements

I am grateful to Moritz von Looz and Juniorprof. Henning Meyerhenke for the
chance to work on this master thesis with the Xeon Phi coprocessor, and advising
and supporting me throughout the time I worked on it.

My deepest gratitude goes to my parents for supporting me throughout my life.

Finally I’m thankful to my friends. Maybe one of them will read this one day.

Contents

1. Introduction 1

1.1. Motivation . 1
1.2. Contribution . 3
1.3. Notation and Preliminaries . 4
1.4. Outline . 4

2. Related Work 7

3. Intel Xeon Phi Coprocessor 9

3.1. Core Pipeline . 9
3.2. Caches and Memory . 11
3.3. Vector Processing Unit . 12
3.4. Programming . 13

4. Software Technologies for Vectorization and Parallelization 15

4.1. Parallelization . 15
4.1.1. OpenMP . 15
4.1.2. OpenMP Offloading . 16
4.1.3. Cilk Plus . 17
4.1.4. Threading Building Blocks . 17
4.1.5. MPI . 18

4.2. Vectorization . 18
4.2.1. Manual vectorization . 18
4.2.2. Auto-Vectorization . 19
4.2.3. Cilk Plus . 20

4.3. Platform . 20

5. Generation of Massive Complex Networks 23

5.1. Algorithm . 23
5.2. Implementation . 26
5.3. Results . 29

5.3.1. General optimizations . 29
5.3.2. Adaptation to Xeon Phi . 32

6. Graph Drawing using Graph Clustering 39

6.1. Algorithm . 39
6.2. Porting . 41
6.3. Results . 44

v

vi Contents

7. Conclusion and Outlook 47

Bibliography 49

Appendix 53

A. Glossary . 53

vi

CHAPTER 1

Introduction

1.1. Motivation

Figure 1.1.: Graph representing a part of the Internet [1]

Graphs and graph algorithms have become increasingly relevant today. With more
data surrounding us every day, it is of interest in a wide range of areas to abstract
this data and make sense of it.

Many relationships can be represented as complex networks. For example the rela-
tionships between people form complex social networks, while the interlinked struc-
ture of hyperlinks has become the namesake of the World Wide Web (see Figure 1.1).
Among others, complex networks are used in research in the areas of statistical
physics, protein interactions, cell biology and brain topology [2, 3, 4]. These com-
plex networks can be worked with, studied and understood using graph algorithms.

Graph Generation

When working with large networks based on real data, a number of problems can
occur:

1

2 1. Introduction

For privacy and confidentiality reasons it is often not possible to share the data that
has been used in research, especially when it concerns actual people. Additionally,
the sheer size of some data sets can be a hindrance to sharing them with other
researchers and making them widely available. This can be solved by providing a
graph generator in combination with a set of parameters, which can be used to create
realistic complex networks for the specific use case. Ideally such graph generators
provide high performance, so huge graphs can be created on the fly and used directly
to independently verify some research.

While real-world data is the gold standard for realistic graphs, there still is a great
use for generating complex networks which are merely similar to reality, but are not
based on any real data. Generating graphs has the additional benefit of being able
to scale the complex network and experimentally test the scalability of the algorithm
that is being researched for smaller and bigger graphs than can be obtained from
real-world data sets.

Graph Drawing

Drawing graphs is the problem of representing them in a pictorial layout, making
their features more easily perceptible for humans [5]. Furthermore graph drawing
can be used as a preliminary step in other applications such as graph partitioning [6].

A common approach to graph drawing is the simulation of physical processes such
as the forces of springs within all vertices of a graph, called a full stress model.
This model can be used for smaller graphs to achieve a graph drawing of high
quality. While it offers good results for graphs with fewer than 10000 vertices, its
performance does not scale to big graphs. Instead we are interested in a solution
that can be parallelized better, while still approximating the low stress metric of the
full stress model.

Computation

While data sets are continually growing larger, performance improvements of the
general computation architecture have slowed down in the last 10 years. Until then
the simplest way of gaining performance has been the continual increase in clock
frequency of the processor. The stagnation of CPU clock frequency in the last
decade is shown in Figure 1.2.

Instead of increasing the clock frequency of a single processor, nowadays multiple
processing cores are used. While the increases in frequency sped up existing pro-
grams without any changes to them, the parallelization of computation requires
software to be designed using parallel programming techniques.

Modern GPUs (Graphical Processing Units) consist of thousands of simple compute
units that can be used to solve general purpose problems in parallel. While CPUs
have been slowing down in their performance increases, GPUs are becoming mas-
sively more parallel with each iteration. The general purpose programming of a GPU
requires specific programming technologies and models such as CUDA or OpenCL,
which makes a GPU more difficult to program for than a CPU.

A parallel alternative to GPUs is offered in the form of the Intel Xeon Phi coproces-
sor, which can be installed as an accelerator card in the same way as a GPU. Instead

2

1.2. Contribution 3

Figure 1.2.: Development of CPU clock frequency since the 1980s [7].

of the thousands of small cores of a GPU, and the up to 20 large and powerful cores
of a CPU, the Xeon Phi features a compromise: About 60 cores at a low frequency,
but featuring large multithreading and vector processing capabilities.

GPUs have been studied widely in the implementation of massively parallel algo-
rithms. For some algorithms such as image processing, GPUs are a natural fit be-
cause of the huge number of weak computation units and streaming memory access.
Graph algorithms on the other hand have been challenging to implement efficiently
on GPU architectures. They rely on largely irregular data accesses and might be an
area where the Xeon Phi’s different architecture can show its advantages.

1.2. Contribution

We have ported two existing non-trivial graph algorithms to the Xeon Phi and
optimized them.

This thesis presents an examination of the Intel Xeon Phi coprocessor architecture
and the ways this architecture can be used in writing new software and porting
existing implementations.

The general ideas for both studied algorithms, for the generation of massive complex
networks as well as graph drawing using graph clustering, are explained. We port
the extensive implementations of both algorithms to the Xeon Phi and describe the
problems that were encountered as well as their solutions. Optimizations for the
algorithms are offered and evaluated, as well as the performance compared to a
two-socket Intel Xeon system.

We found limitations with the offloading that is required for large data sets and
caused huge performance decreases that could only partially be alleviated. We
present two implementations of algorithms that both scale well on the Xeon Phi.
The graph drawing algorithm is able to surpass the host system’s performance, es-
pecially for sparse graphs.

3

4 1. Introduction

1.3. Notation and Preliminaries

A graph G = (V,E) consists of a set of vertices V and a set of edges E ⊆ V × V .
An edge e = (u, v) ∈ E stands for a connection from the source u to the target v.
We denote the number of vertices of a graph with n = |V | and the number of edges
with m = |E|.

The graphs we work with in this thesis are undirected, so that (u, v) ∈ E if and
only if (v, u) ∈ E. When there is an edge (u, v) ∈ E, then u and v are neighbors.
Similarly N(u) = {v : (u, v) ∈ E} denotes the neighborhood of u.

A loop is an edge (u, u) ∈ E connecting a vertex to itself. The degree of a vertex
deg(v) is the number of incident edges, counting loops twice. The distance between
two vertices is the number of edges in a shortest path connecting them. The diameter
d of a graph is the greatest distance between any pair of vertices.

Figure 1.3.: The complete graph K5

As an example the complete graph K5 = (V,E) with |V | = 5 and ∀(u, v) ∈ V × V :
u 6= v → (u, v) ∈ E is visualized in Figure 1.3.

Further definitions of terms used in this thesis can be found in the Glossary.

1.4. Outline

This thesis is structured as follows.

Chapter 2 discusses related work in the field of parallelizing and porting some graph
algorithms and other algorithms to the Intel Xeon Phi architecture, including eval-
uations and comparisons to the scope of our work.

Chapter 3 details the general Intel Xeon Phi coprocessor architecture, its core
pipeline design, the organization of caches and memory as well as the vector pro-
cessing unit and how the Xeon Phi can be programmed.

Chapter 4 goes into more detail for the Xeon Phi programming models, looking into
parallelization as well as vectorization. For the MIMD parallelization the program-
ming models of OpenMP, OpenMP offloading, Cilk Plus and MPI are presented. For
the SIMD vectorization we present two major approaches to achieving it: Manual
vectorization by the developer using assembly language or compiler intrinsics, and
auto-vectorization by the compiler, often assisted by the programmer.

Chapter 5 introduces the generative algorithm for massive complex networks. The
parallel version of the algorithm is presented. General optimizations and Xeon Phi

4

1.4. Outline 5

specific ones, as well as the challenges of porting the specific algorithm as well as the
surrounding framework, NetworKit, are detailed. In the results the running time of
the implementation is compared with that of the host system.

Chapter 6 introduces the multilevel maxent-stress graph drawing algorithm that uses
graph clustering. The difficulties in porting the algorithm are explained. Differences
to the graph generation algorithm and simple yet effective optimizations are dis-
cussed. In the final results we again discuss the resulting performance in comparison
to the host system.

Chapter 7 concludes this thesis by summarizing the results and discussing the lessons
learned. An outlook into future research concerning graph algorithms on the Xeon
Phi is given.

5

CHAPTER 2

Related Work

Processing sparse graphs and in particular complex networks on accelerators is a
non-trivial task due to the input’s irregular structure, high synchronization costs,
and frequent memory dereferences in sparse data structures [8]. Several promising
works exist, however.

Saule and Çatalyürek have investigated the scalability of several graph algorithms
on the Intel Xeon Phi [9]. For breadth-first search they have achieved significant
speedups, while graph coloring and other irregular computations had lower speedups.
In most examples the OpenMP implementation scaled better than those using Intel
Threading Building Blocks (TBB) and Cilk Plus. We will take a look at OpenMP,
TBB and Cilk Plus in Chapter 4. The authors note that the work required for
porting algorithms to the Intel Xeon Phi is relatively low.

Sarıyüce et al. [10] have investigated vectorization for the Xeon Phi taking the prob-
lem of computing closeness centrality as an example. This centrality measure de-
termines the importance of vertices based on aggregated distances. The authors
compare manual vectorization using 512-bit Xeon Phi intrinsics with automated
vectorization. Only a low overhead is found for the automated approach using fairly
high level C++ template code with OpenMP pragmas and a modern optimizing
compiler. Using this technique, they observe a speedup factor of up to 11 compared
to a CPU implementation on real social networks.

Other performance evaluations of the Xeon Phi have shown that the Xeon Phi can
compete with GPUs, for example on the problem of sparse matrix multiplication,
which is of interest in many scientific applications, such as linear solvers and graph
mining. The limiting factor turned out to be the memory latency, not the bandwidth
of the Xeon Phi. The sparse kernel performance of the Xeon Phi (a prototype of
the SE10P model) has been found to be superior to that of current general purpose
processors and GPUs [11]. This result makes the Xeon Phi a particularly interesting
accelerator for graph algorithms since many real-world graphs are sparse.

Moreover, a performance comparison of Xeon Phi and GPUs for the Swendsen-
Wang algorithm for Monte Carlo simulations has found significant speedups for
both accelerator platforms when compared to general purpose CPUs. [12]. The
results place the Xeon Phi head to head with current GPU acceleration cards. The
adaptation for the Xeon Phi was found to be straightforward.

7

8 2. Related Work

Two techniques for ray tracing have been adapted to the Intel MIC architecture,
successfully using wide-SIMD operations. Traditionally it has been challenging to
efficiently map ray tracing algorithms to wide-SIMD hardware [13].

Note that the graphs we consider in the first algorithm are much larger than in the
above works and do not fit into the Xeon Phi’s memory. This requires us to use
offloading and communication to the host system to send partial results.

The book“Intel Xeon Phi Coprocessor High-Performance Programming”investigates
the potential of auto-vectorization, as well as manual vectorization of code using
multiple examples. We introduce OpenMP, Intel TBB and Cilk Plus as technologies
for task separation [14].

Other general works demonstrate the scalability of Xeon Phi cards to super-computing
tasks while maintaining a favorable power-performance trade-off, making the Xeon
Phi an interesting alternative to GPU accelerator cards in high performance com-
puting and supercomputers especially [15].

A Best Practice Guide describing approaches to performance improvements is pro-
vided, which explains how to use memory alignment, SIMD optimizations as well as
OpenMP optimizations [16].

Efficient parallelization using OpenMP is considered by Cramer et al. as an inter-
esting alternative to more laborious rewrites in CUDA or OpenCL for GPUs [17].

8

CHAPTER 3

Intel Xeon Phi Coprocessor

The Intel Xeon Phi is an accelerator card connected over the PCIe bus and designed
to handle highly parallel problems. In this master thesis we work with a 5100 series
card (code name Knights Corner) from the first generation of this architecture,
which is also known as Intel Many Integrated Core Architecture (Intel MIC). The
specific card we use, the Xeon Phi 5110P, contains 60 in-order cores clocked at
1.053 GHz and is based on the original Pentium design from 1994, but augmented
with 64-bit support, a 512-bit SIMD vector unit and four hardware threads per
core. The internal GDDR5 memory has a size of 8 GB and is connected through 8
memory controllers (GDDR MC) with a theoretical bandwidth of 350 GB/s. All 60
cores, their 512 KiB L2 cache, the memory controllers and the PCIe interface are
interconnected using a bidirectional ring bus of Core-Ring Interconnects (CRI) [18].
Cache accesses are kept coherent using a distributed Tag Directory (TD) that tracks
the cache lines and their state in all L2 caches. This layout is visualized in Figure 3.1.

3.1. Core Pipeline

Being based on the original Pentium CPU, the Xeon Phi’s cores’ internal architec-
ture is much simpler than that of a modern CPU. Contrary to the common out-
of-order cores of modern CPUs the Xeon Phi executes instructions fully in-order,

9

10 3. Intel Xeon Phi Coprocessor

CRI CRI CRI CRI

TD TD TD TD

TDTDTDTD

CRICRICRICRI

PCIe
client
logic

GDDR
MC

GDDR
MC

GDDR
MC

GDDR
MC

Core

L2

Core

L2

Core

L2

Core

L2

L2

Core

L2

Core

L2

Core

L2

Core

Figure 3.1.: Overview of the layout of a Xeon Phi accelerator card, detailing 8 of the
60 available cores and 4 of the 8 GDDR memory controllers.

which simplifies the core design. The other main differences are Simultaneous Mul-
tithreading (SMT) for four threads instead of the usual two threads in Intel’s Xeon
and i7 CPUs. Additionally the Xeon Phi features a 512-bit wide vector processing
unit (VPU), which performs favorably compared to the Advanced Vector Extensions
(AVX) of current CPUs. 512-bit wide SIMD (single instruction, multiple data) units
are only expected for regular Intel Xeon CPUs by 2016, while the Xeon Phi has been
available since 2012. Only the Initial Many Core Instruction set (IMCI) is supported
on the Xeon Phi, with no compatibility to the long history of SIMD instruction sets
for x86 CPUs, of which the major ones are:

• MMX from 1997, capable of processing eight 8-bit integers concurrently (64
bits wide)

• SSE (Streaming SIMD Extensions) from 1999, capable of processing four 32-
bit floating point numbers concurrently (128 bits wide)

• SSE2 (2001), SSE3 (2003), SSSE3 (2006), SSE4 (2007), adding new instruc-
tions to SSE

• AVX (2011) and AVX2 (2013), expanding floating point and integer com-
mands to 256 bits

A clean cut of compatibility with the x86-64 instructions and extensions leads to
simpler CPU cores, but breaks compatibility with existing implementations that
have been explicitly optimized using these SIMD extensions.

The internal pipeline design of a single core is shown in Figure 3.2, with an actual
photo of the Xeon Phi CPU in Figure 3.3.

10

3.2. Caches and Memory 11

32KiB L1 Instruction Cache

Instruction Decode

Execution Pipe 0 Execution Pipe 1

X87
VPU

512b SIMD
Scalar

32KiB L1 Data Cache

51
2K

iB
L
2
C
ac
h
e

C
or
e
R
in
g
In
te
rc
on

n
ec
t

T
ag

D
ir
ec
to
ry

Thread 1 Thread 2 Thread 3 Thread 4

Figure 3.2.: Xeon Phi Core Thread and Instruction Pipeline.
The right side shows the core’s access to the Core Ring Interconnect.
This is the source of the instruction cache as well as connected to the
data cache. From the L1 instruction cache four threads are simulta-
neously prefetched. Two of those threads can run simultaneously on
the execution pipelines. While the first pipeline can access the VPU
(SIMD), X87 (floating point) as well as scalar execution units, the sec-
ond pipeline can only access the scalar execution unit.

3.2. Caches and Memory

L1 L2

Size 32KiB + 32KiB 512KiB

Associativity 8-way 8-way
Line size 64B 64B
Banks 8 8
Access time 1 cycle 11 cycles
Policy pseudo LRU pseudo LRU

Table 3.1.: Xeon Phi Key Cache Parameters

Each core features a 32 KiB first level data cache as well as another separate 32 KiB
instruction cache. No hardware prefetching is available for the L1 data cache and
instead the compiler or programmer can use software prefetching instructions.

The L2 cache has a size of 512 KiB. A simple form of a hardware streaming prefetcher
performs caching on the L2 cache. The most interesting aspect of the L2 cache is
its function as a shared last level cache among all the Xeon Phi cores. The L2 cache
is part of the core-ring interconnect, which allows read-only access to the L2 caches
of other cores.

11

12 3. Intel Xeon Phi Coprocessor

Figure 3.3.: Die of the Xeon Phi coprocessor, showing 64 interconnected cores in the
center (4 of which are disabled to increase yield)

When a core encounters a cache miss on its own L2 cache, it sends an address request
to the tag directories of the other cores. The tag directories track the cache lines
in all L2 caches. When a memory address is a encountered in a tag directory, that
core’s L2 cache sends the requested data. Otherwise the memory address is sent to
the memory controller.

Caches are kept coherent among all cores using the MESI protocol. This commonly
used cache and memory coherence protocol gets its name from marking each cache
line as modified, exclusive, shared or invalid.

3.3. Vector Processing Unit

The Vector Processing Unit (VPU) of each core contains 32 vector registers of 512
bits width. Up to 32 single-precision or 16 double-precision floating-points operations
can be performed per cycle. An example SIMD calculation for a simple vector
addition is presented in Figure 3.4.

a[15] a[14] a[13] a[12] a[11] a[10] a[9] a[8] a[7] a[6] a[5] a[4] a[3] a[2] a[1] a[0]

b[15] b[14] b[13] b[12] b[11] b[10] b[9] b[8] b[7] b[6] b[5] b[4] b[3] b[2] b[1] b[0]

c[15] c[14] c[13] c[12] c[11] c[10] c[9] c[8] c[7] c[6] c[5] c[4] c[3] c[2] c[1] c[0]

+

=

32 bits (float)

512 bits

Figure 3.4.: Representation of vector addition vaddps a, b, c.
All of the 16 pairs of 32-bit values are summed in a single instruction.

12

3.4. Programming 13

3.4. Programming

For the programmer the Xeon Phi is presented as a regular computer running a
stripped down Linux operating system. Direct access to the Xeon Phi is possible
using SSH over a virtual network. The programming languages C, C++ and For-
tran as well as those that compile through either of these languages, such as Cilk,
Cilk++ and Nim [19], can be used with Intel’s compiler. GCC is adding elementary
Xeon Phi support with version 5.1, but is not expected to perform the advanced
automatic vectorizations of Intel’s compiler. For parallelization, frameworks such
as MPI, OpenMP, Cilk Plus and others can be used. This standard tool-chain sig-
nificantly reduces the overhead of adapting existing code to the Xeon Phi. The
offloading mode allows regular OpenMP code to run on the host system while of-
floading calculations, fully or partially, to Xeon Phi coprocessors.

13

CHAPTER 4

Software Technologies for

Vectorization and Parallelization

The Intel Xeon Phi has two main mechanisms for speeding up software, both of
which introduce forms of parallelism: Parallelizing the code to use up to 240 threads
on 60 cores, and vectorizing the code to use the Vector Processing Unit. In this
chapter we explore the possible software technologies to make use of both of these
mechanisms.

4.1. Parallelization

Parallelization is a form of MIMD (multiple instruction, multiple data) parallelism,
that runs different instructions on different data on each of the processing units,
in our case 60 cores with 240 threads on a single Xeon Phi coprocessor. There
are multiple approaches available to parallelize code, which we will explain in this
section.

Code Block 4.1 Non-parallelized and non-vectorized array addition

float a[MAX], b[MAX], c[MAX];

for (i = 0; i < MAX; i++)

c[i] = a[i] + b[i];

As an example we shall parallelize the simple array addition code in Code Block 4.1.

4.1.1. OpenMP

OpenMP is an API for multi-platform shared memory multiprocessing programming.
It is available for C, C++ and Fortran and already widely used in existing software,
which enables easy porting to the Xeon Phi.

OpenMP consists of a set of compiler directives. When these directives are ignored
or the compiler is not aware of them at all, the program simply runs sequentially.
When the compiler interprets the directives, they are used to spawn parallel tasks in
the defined manner. OpenMP programs start executing with a single thread until a

15

16 4. Software Technologies for Vectorization and Parallelization

Code Block 4.2 Parallelized array addition with OpenMP

float a[MAX], b[MAX], c[MAX];

#pragma omp parallel for

for (i = 0; i < MAX; i++)

c[i] = a[i] + b[i];

parallel construct is encountered. Only at such a parallel construct a thread pool is
spawned to work through parts of the problem in parallel.

Our running example has been parallelized with OpenMP in Code Block 4.2.

4.1.2. OpenMP Offloading

With regular OpenMP pragmas the code can be run directly on the Xeon Phi in
the same way as on a regular CPU. An alternative mode of execution is offered by
OpenMP offloading, where the main code is executed on the host system. Only
specific parts of the code are offloaded to the Xeon Phi.

This has the advantage that the code can run on a host system which can be equipped
with significantly more main memory than the Xeon Phi’s maximum of currently
16 GB. Subsets of the problem can be offloaded to the Xeon Phi while the host
system can either wait or calculate at the same time, using regular OpenMP. Data
that has to be handled on the Xeon Phi, needs to be transferred over the PCIe bus
and the final results received over it as well.

Code Block 4.3 Parallelized array addition with OpenMP offloading

float a[MAX], b[MAX], c[MAX];

#pragma offload target(mic) in(a, b) out(c)

{

#pragma omp parallel for

for (i = 0; i < MAX; i++)

c[i] = a[i] + b[i];

}

In the running example in Code Block 4.3 the arrays a and b can be filled on the
host system. With the beginning of the pragma offload section they are transferred
to the Xeon Phi. We use the in and out offloading parameters to transfer the exact
data that we need. If no such values would be given, all variables occurring in the
inner block would be transferred in both directions, first to the Xeon Phi before
executing the block, then back to the host system after the execution finished.

When the inner block is executed on the Xeon Phi, the host system waits for the
calculation to finish. Inside the inner block all of the Xeon Phi’s cores can be used,
except for one that is reserved for transferring data over the PCIe interface. Finally
the array c is transferred back to the host system.

Instead of having the host system wait while the Xeon Phi performs calculations, it
is also possible to use partial offloading. While the Xeon Phi is working on a part of

16

4.1. Parallelization 17

the problem, the host system can work on another chunk of the problem itself. (See
Code Block 4.4)

Code Block 4.4 Parallelized array addition with asynchronous OpenMP offloading

1 float a[MAX], b[MAX], c[MAX];

2 // We specify to use the first Xeon Phi so that we can assure

3 // that the same one is used in the following offload_wait.

4 #pragma offload target(mic:0) in(a, b) out(c) signal(c)

5 {

6 #pragma omp parallel for

7 for (i = 0; i < MAX; i++)

8 c[i] = a[i] + b[i];

9 }

10 // Host can execute code here while the Xeon Phi is processing

11 // the previous block at the same time

12 #pragma offload_wait target(mic:0) wait(c)

13 // Previous line blocks until the Xeon Phi finishes and signals

4.1.3. Cilk Plus

Cilk Plus is a programming language for parallel computing by Intel, based on C and
C++. The offloading offered by Cilk Plus is more automatic than with OpenMP, but
in return there is less control of what data is transferred and what code offloaded.

Code Block 4.5 Parallel Cilk Plus array addition

float a[MAX], b[MAX], c[MAX];

cilk_for (i = 0; i < MAX; i++)

c[i] = a[i] + b[i];

Code Block 4.5 shows the parallel for loop construct cilk_for in Cilk Plus, which
splits up the work of the loop into chunks that are worked through in parallel.

While the original Cilk++ implementation was proprietary, Intel has decided to open
up Cilk Plus by contributing an open source implementation to the GNU Compiler
Collection (GCC) and Clang. This might lead to wider adoption.

4.1.4. Threading Building Blocks

Intel Threading Building Blocks (TBB) is a high level C++ template library. It
offers another approach to writing parallel programs, including the ability to write
tasks according to high-level parallel programming paradigms. Porting existing pro-
grams to use TBB and its approach of algorithmic skeletons is more difficult than
annotating an existing program with OpenMP pragmas. Our simple calculation has
been ported to use TBB’s parallel_for construct in Code Block 4.6.

17

18 4. Software Technologies for Vectorization and Parallelization

Code Block 4.6 Parallel TBB array addition

float a[MAX], b[MAX], c[MAX];

parallel_for(size_t(0), MAX, size_t(1), [=](size_t i) {

c[i] = a[i] + b[i];

});

4.1.5. MPI

The Message Passing Interface (MPI) is a standard for message-passing in dis-
tributed memory environments. Implementations are available for a wide range
of parallel and distributed computers. MPI can be used complementarily to shared
memory programming models, such as OpenMP, with MPI splitting a task among
distributed machines and OpenMPmulti-threading the code on each of the machines.

MPI allows connecting multiple Xeon Phi systems as well as their host systems or
other computers with each other. For such highly parallelized systems, MPI is the
preferred choice. Transferring big amounts of data using MPI is currently slower
than OpenMP offloading for the Xeon Phi. In this thesis we used a single Xeon Phi
card, at times in concert with its host system, for which OpenMP was a better fit,
so MPI will not be regarded further.

For our running example MPI is also not a good fit, as it would require copying
chunks of the array to other systems or processes by message passing. This would
be significantly more expensive than simply performing the addition in a shared
memory system without any copies.

4.2. Vectorization

Contrary to the MIMD parallelism of the parallelization, vectorization achieves
SIMD (single instruction, multiple data) parallelism. This means that a single thread
executes a single instruction on a group of data values, up to 16 for the Xeon Phi.
The hot spots, tight inner loops, have to use the Vector Processing Unit (VPU) if a
significant speedup in single threaded performance is desirable.

4.2.1. Manual vectorization

Vectorization can be achieved most reliably by vectorizing the code in question
manually. This means that either assembly instructions directly or vector intrinsics
have to be used. Intel provides vector intrinsics for C, C++ and Fortran [20]. They
are a way of accessing the Xeon Phi’s capabilities in a very direct manner, as most
intrinsics represent a one-to-one translation to a single assembly instruction.

This is more manual work than the other methods, and has more room for error, but
also allows more control and therefore potentially higher performance. The code is
intrinsically non-portable with manual vectorization, and a non-vectorized version
has to be maintained as well if portability is a goal.

An example for manual vectorization is presented in Code Block 4.7. It is essential to
properly align the arrays and assure that their size MAX is a multiple of 16. Otherwise
special cases are not handles, which would further complicate this example.

18

4.2. Vectorization 19

Code Block 4.7 Manually vectorized array addition

1 // Include header containing all Intel Compiler intrinsics

2 #include <immintrin.h>

3 float a[MAX] __attribute__((aligned(64)));

4 float b[MAX] __attribute__((aligned(64)));

5 float c[MAX] __attribute__((aligned(64)));

6 // Allocate 512 bit VPU registers

7 __m512 _a, _b, _c;

8 for (i = 0; i < MAX; i += 16) {

9 // Load 512 bits from memory location &a[i] into register _a

10 _a = _mm512_load_ps(&a[i]);

11 _b = _mm512_load_ps(&b[i]);

12 // Add 16 32-bit floating-point numbers in _a and _b

13 and store the results in _c

14 _c = _mm512_add_ps(_a, _b);

15 // Store the results from _c in the memory location &c[i]

16 _mm512_store_ps(&c[i], _c);

17 }

4.2.2. Auto-Vectorization

In contrast to manual vectorization we can use the portable code, without vector
intrinsics, and let the compiler automatically vectorize it. The chance of program-
ming errors is lower with this method and the code stays fully portable. The main
disadvantage is a dependency on the compiler’s ability to vectorize the code well. To
help with this it is possible to give the compiler hints and instructions about what
to vectorize in what manner. The diagnostics of the compiler can help in figuring
out how well the vectorization worked and gives hints for improvements. Relying
on auto-vectorization introduces a dependency on the specific compiler version used,
whereas any other compiler version may have different performance characteristics
with respect to the vectorized code.

The Intel compiler understands a wide range of attributes and pragmas that the
programmer can use to improve the vectorization. Using compiler switches a vec-
torization report can be created, which details the level of vectorization of the code
as well as suggests changes to improve it.

Code Block 4.8 Auto-vectorized array addition

1 float a[MAX] __attribute__((aligned(64)));

2 float b[MAX] __attribute__((aligned(64)));

3 float c[MAX] __attribute__((aligned(64)));

4 #pragma simd

5 for (i = 0; i < MAX; i++)

6 c[i] = a[i] + b[i];

For example when the data is not properly aligned or the compiler can not assume

19

20 4. Software Technologies for Vectorization and Parallelization

proper alignment in Code Block 4.8, the compiler informs about this. When the
number of iterations does not translate directly to the 512-bit VPU, the compiler
will inform about this and handle the remaining data without the VPU. A successful
vector report for our example is presented in Figure 4.1.

LOOP BEGIN at auto.c(5,8)

vectorization support: reference c has aligned access

[auto.c(9,5)]

vectorization support: reference a has aligned access

[auto.c(9,5)]

vectorization support: reference b has aligned access

[auto.c(9,5)]

vectorization support: unroll factor set to 2

SIMD LOOP WAS VECTORIZED

--- begin vector loop cost summary ---

scalar loop cost: 6

vector loop cost: 0.620

estimated potential speedup: 19.200

lightweight vector operations: 5

--- end vector loop cost summary ---

LOOP END

Figure 4.1.: Vectorization report created by the Intel Compiler for the auto-
vectorized Code Block 4.8

4.2.3. Cilk Plus

In addition to invoking tasks and threads, Cilk Plus also allows specifying how to
vectorize code in a high level way. On the other hand the code ends up platform-
specific, as a specific compiler for the Cilk Plus language is required.

Code Block 4.9 Vectorized Cilk Plus array addition

float a[MAX] __attribute__((aligned(64)));

float b[MAX] __attribute__((aligned(64)));

float c[MAX] __attribute__((aligned(64)));

c[i:MAX] = a[i:MAX] + b[i:MAX];

Our running example is given in Code Block 4.9. We will not use this method so it
will not be investigated further.

4.3. Platform

All experiments in this thesis were ran on a host system containing two Intel Xeon
E5-2680 (Sandy Bridge) processors, featuring 8 cores and 16 threads at a core fre-
quency of 2.7 GHz each. The system contains 256 GB of DDR3 RAM as the shared
main memory with a frequency of 1.333 GHz. The server is running openSUSE 13.1

20

4.3. Platform 21

with the Linux kernel 3.11.10-21. This system contains an Intel Xeon Phi 5110p with
60 cores and 240 threads at a frequency of 1.053 GHz as well as 8 GB of GDDR5
main memory. The Intel ICC/ICPC 15.0.1 was used as the C/C++ compiler for the
host system as well as the Xeon Phi coprocessor.

21

CHAPTER 5

Generation of Massive Complex

Networks

5.1. Algorithm

Network Properties

Complex networks, which are used to model real data such as the hyperlinks of
the world wide web or relationships between people [2], have non-trivial topological
features: They are mostly scale-free, which means that their degree distribution
follows a power law. The number of nodes with degree k is proportional to k−γ for
a fixed γ > 0. This implies that there are a few high-degree nodes, so called hubs,
and many low-degree nodes. Random graphs on the other hand have an exponential
degree distribution. An example of a power-law as well as an exponential degree
distribution is shown in Figure 5.1.

101 102 103

10−8

10−6

10−4

10−2

100

degree

fr
ac
ti
on

of
ve
rt
ic
es

power-law: x−2.8

exponential: 2e−0.6x

Figure 5.1.: Illustration of a power-law degree distribution in comparison to an ex-
ponential distribution. In a log-log plot the power-law is a straight line.

Another common class of networks are small-world networks, so called after the
small-world phenomenon that postulates that all people are connected to each other

23

24 5. Generation of Massive Complex Networks

p = 0 p = 1
Increasing randomness

Regular Small-world Random

Figure 5.2.: Illustration of a small-world network compared to a regular and random
network [22]

by only six degrees (or another small number) of separation. This corresponds to a
graph with diameter 6 [21].

For small-world networks a high clustering coefficient is typical as well. The clus-
tering coefficient quantifies how many triangles a graph contains compared to the
number of triads, which are paths of length 2. This is a measure of the probabil-
ity of two nodes with a common neighbor to be connected themselves. A simple
small-world network is shown in Figure 5.2 [22].

We use the generative model of Krioukov et al., which is based on hyperbolic ge-
ometry [23]. The graphs generated with this model have an adjustable power-law
degree distribution, a proven high clustering coefficient and community structure of
a small-world network [24].

Hyperbolic Geometry

Hyperbolic Geometry is a non-Euclidean geometry. While all other Euclidean pos-
tulates are intact, the parallel postulate is negated:

Take any line R and and a point P that is not on R. The parallel postulate of
Euclidean geometry states that there is exactly one line through P that is parallel
to R, i.e. does not intersect it. In hyperbolic geometry there are multiple lines
through P that do not intersect R.

Especially relevant to us is the property of exponential expansion of space of hyper-
bolic geometry. This means that the area of a circle grows exponentially with the
distance from the center. A natural embedding of graphs with a tree-like structure
is a consequence, as the number of vertices grows in a related manner, exponentially
with the depth of a tree.

A hyperbolic graph containing 500 nodes is shown in Figure 5.3a. The neighborhood
of a vertex u is defined as all vertices v whose hyperbolic distance distH(u, v) is below
a fixed threshold. Thus the neighborhood of a vertex is a hyperbolic circle around
it.

We use the Poincaré disk model, one of the commonly used representations of hy-
perbolic space within Euclidean geometry. In this disk model the points of the

24

5.1. Algorithm 25

(a) Native representation of a graph, visual-
ized in hyperbolic geometry. The light
blue circle denotes the neighborhood of
the bold blue node.

(b) Poincaré disk model, which transforms
the neighborhood into a Euclidean circle
with moved center.

Figure 5.3.: Representation of a graph in hyperbolic geometry [25].

hyperbolic geometry are represented inside the unit disk. This model preserves
angles and maps hyperbolic circles to Euclidean circles. The hyperbolic distance
distH(u, v) can be calculated in the Poincaré model with [26]

distH(u, v) = acosh

(

1 + 2
||p− q||2

(1− r2p)(1− r2q)

)

, (5.1)

where p = (φp, rp) and q = (φq, rq).

Figure 5.3b shows the same graph as Figure 5.3a, but translated into the Poincaré
disk model. The neighborhood is a also a Euclidean circle in this model, simplifying
the calculation whether a vertex is a neighbor of another vertex.

Generative Model

Figure 5.4.: Polar quadtree with the cells denoted in red [25].

Based on the model of Krioukov et al. with a high clustering coefficient and a power-
law degree with an adjustable exponent, a faster generation algorithm was built by

25

26 5. Generation of Massive Complex Networks

von Looz et al. [25]. It uses a polar quadtree on the Poincaré disk as its most
important data structure. Without the quadtree, the determination of the neigh-
borhood of every vertex requires a distance calculation to every other vertex. The
quadtree instead limits this to the vertices contained in the leaf cells covering the
neighborhood circle. A section of the polar quadtree is shown in Figure 5.4.

Algorithm 1: Sequential generation algorithm [25]

Input: number of vertices n, dispersion α, radius R
// The dispersion parameter α determines the probability density of

the placement of vertices

Output: G = (V,E)
// Returned graph with |V | = n and expected |E| = 8

π
ne−R/2 n

2

1 V = set of n vertices;
2 T = empty polar quadtree;
// Create vertices on the unit disk and insert them into polar

quadtree

3 for vertex v ∈ V do

4 draw φ[v] from U [0, 2π);
5 draw rH[v] with density f(r) ∝ α sinh(αr);
6 rE [v] = hyperbolicToEuclidean(rH[v]);
7 insert v into T at (φ[v], rE [v]);

8 end

// Determine neighborhood of vertices, find the vertices inside this

circle in the quadtree and add them as edges

9 for vertex v ∈ V do

10 CH = circle around (φ[v], rH[v]) with radius R;
11 CE = transformCircleToEuclidean(CH);
12 for vertex w ∈ T .getVerticesInCircle(CE) do

13 add (v, w) to E;
14 end

15 end

16 Return G

The sequential generation algorithm is presented in Algorithm 1. First the positions
of the vertices are generated randomly in lines 4 (angle) and 5 (distance from center).
In line 6 the vertices are mapped to the Poincaré disk. The vertices are stored in the
polar quadtree data structure in line 7. Inside the for loop in line 9 the neighborhood
of each vertex is calculated as a circle and the respective nodes of the quadtree are
accessed in a range query to find the vertices in it.

The expected running time of this algorithm is O((n3/2 +m) log n), making it sub-
quadratic thanks to the polar quadtree and a fast range query [25].

My contribution is the adaptation of the algorithm to the Xeon Phi, including general
optimizations that improve scalability.

5.2. Implementation

An existing implementation for the hyperbolic graph generation algorithm was used.
It is part of NetworKit, a high-performance network analysis toolkit written in C++

26

5.2. Implementation 27

using C++ style code, which also exposes the algorithms to Python [27]. This means
that contrary to most small algorithms studied in other Xeon Phi adaptations, the
code is not written in a low level C programming style but instead uses complicated
high level C++ data structures. As part of this thesis NetworKit was adapted to
work with the Intel C++ Compiler as well as run on the Xeon Phi.

The Intel C++ compiler (ICPC) 15.0 is mostly compatible with the C++11 standard
and the GNU C++ Compiler (g++), but a few differences and bugs still required
changes to the source code of NetworKit as a whole:

Calculating the value for π at compile time with a constexpr was not possible, so
it had to be worked around, as is shown in Code Block 5.1.

Code Block 5.1 Special case constexpr without any calculations for the Intel
compiler

#ifdef __INTEL_COMPILER

constexpr double PI = 3.1415926535897932384626433832795028;

#else

constexpr double PI = 2.0*std::acos(0);

#endif

Parts of the code were implemented in high performance assembly, which had to be
disabled for the Xeon Phi as it was detected as an x86-64 system so far (see Code
Block 5.2).

Code Block 5.2 Disabling assembly instructions for the Xeon Phi architecture

#if defined __MIC__

#define TTMATH_NOASM

#endif

The Intel compiler is stricter about implicit type conversions, which required minor
changes that can be considered good style anyway. One of these changes is depicted
in Code Block 5.3.

Code Block 5.3 Explicit type conversion to keep the ICPC happy

// previously: std::set<unsigned int> seeds = {seed};

std::set<unsigned int> seeds = {(unsigned int) seed};

The C++ monotonic clock std::chrono::steady_clock still uses its old name
in ICPC when compiling for the Xeon Phi, requiring another ifdef (see Code
Block 5.4).

The nullptr keyword is not supported yet either, so (void*)0 has to be used
instead.

27

28 5. Generation of Massive Complex Networks

Code Block 5.4 steady_clock is still called monotonic_clock when compiling for
the Xeon Phi

#ifdef __MIC__

#define my_steady_clock std::chrono::monotonic_clock

#else

#define my_steady_clock std::chrono::steady_clock

#endif

Neither available is a vector’s emplace method, which can be emulated with insert

instead, as it is done in Code Block 5.5.

Code Block 5.5 Emulating Vector::emplace

#if defined(__MIC__)||(defined(__GNUC__)&&!__GNUC_PREREQ(4,8))

result.insert(std::make_pair(i, temp));

#else

result.emplace(i, temp);

#endif

The main problem turned out to be a bug in function traits that are used on lambdas
(anonymous functions). This is a common concept at the very core functionality of
NetworKit. A single such replacement, of which many related ones were necessary,
is seen in Code Block 5.6.

Additionally support for default template parameters is missing, which required
manually adding the default values to the call sites.

It became clear that many optimizations do not just have an effect on the Xeon Phi,
but also speed up execution on a regular CPU. We will look at general optimizations
and Xeon Phi specific ones in the following section about our results.

28

5.3. Results 29

Code Block 5.6 Working around differing templating implementations

1 template<class F, bool InEdges = false,

2 typename std::enable_if<std::is_same<

3 edgeweight,

4 typename Aux::FunctionTraits<F>::template arg<2>::type

5 >::value>::type* = nullptr>

6 auto edgeLambda(F&f, node u, node v, edgeweight ew, edgeid id)

7 const -> decltype(f(u, v, ew)) {

8 return f(u, v, ew);

9 }

(a) Old implementation, failing to compile with ICPC

1 template<class F, bool InEdges = false,

2 typename std::enable_if<

3 (Aux::FunctionTraits<F>::arity >= 2) &&

4 std::is_same<

5 edgeweight,

6 typename Aux::FunctionTraits<F>::template arg<2>::type

7 >::value

8 >::type* = (void*)0>

9 auto edgeLambda(F&f, node u, node v, edgeweight ew, edgeid id)

10 const -> decltype(f(u, v, ew)) {

11 return f(u, v, ew);

12 }

(b) New implementation with explicit function arity check, working in g++ and
ICPC

5.3. Results

5.3.1. General optimizations

As the queries on the polar quadtree are all independent of one another, they can
be parallelized trivially. The level of parallelism gained by this is sufficient, as all
interesting graphs consist of a higher number of vertices than we have computing
cores available.

The main problem with speeding up the algorithm were the frequent memory real-
locations, internally causing locking malloc calls. While the algorithm scaled to 4
threads on the Xeon Phi, it couldn’t get any benefit from adding any more threads.
When using the Intel TBB’s malloc implementation, the algorithm scaled up to
120 threads. This effect was much bigger on the Xeon Phi than on the Xeon host
system. Therefore it is especially important to minimize memory allocations when
optimizing code for the Xeon Phi.

29

30 5. Generation of Massive Complex Networks

1 2 4 8 15 30 60 120 240

0

10

20

30

threads

sp
ee
d
u
p
fa
ct
o
r

TBB malloc
glibc malloc

Figure 5.5.: Speedup of the initial implementation for 200000 vertices on the Xeon
Phi, with glibc’s malloc compared to TBB’s lock-free malloc. Later
further optimizations were made that sped up the execution even with
malloc.

In initial development, using the lock-free malloc implementation of Intel Thread-
ing Building Blocks had a massive impact (see Figure 5.5), in current versions the
speedup is a mere factor 2 (see Figure 5.6). We conclude that a lock-free malloc
implementation is an important optimization for parallel code that often allocates
memory.

1 30 59 118 236

0

20

40

60

80

100

threads

sp
ee
d
u
p
fa
ct
or

TBB malloc
glibc malloc

Figure 5.6.: Speedup of full Phi offloading in the final, optimized code, for 2.1 · 106

vertices and 6.8 ·109 edges, with glibc’s malloc compared to TBB’s lock-
free malloc

The reduction of memory allocations had another big effect, speeding up the code
by a factor of two. This was achieved by pre-allocating a data structure of the
expected size instead of growing the data structure when adding new vertices to
the neighborhood. Another optimization was to reuse data structures instead of
allocating new ones in each loop iteration.

30

5.3. Results 31

0.1 0.3 0.5 0.7 0.90.99

2

4

6

8

balance

ru
n
n
in
g
ti
m
e
[s
]

capacity 128
capacity 1024

Figure 5.7.: Running time depending on the algorithm’s balance and capacity pa-
rameters for partial offloading of a graph with 2.6 ∗ 105 vertices and
3.0 ∗ 108 edges.

The quadtree has two major variables that can be used to optimize performance for
a specific system, the tree balance and the capacity of leaf cells. The tree balance
determines how big the children cells get when a leaf is split. A balance of 0.1 implies
assigning a greater amount of space to inner children, 0.5 stands for a perfect balance,
and 0.9 assigns a greater amount of space to outer children.

In Figure 5.7 the running time depending on the tree balance for capacity 128 and
1024 is shown. We observe that a deliberate imbalance, assigning a greater amount
of space to the outer children in each split, is yields better performance. The reason
for this is that we keep the innermost leaf cells small, as they will be included in
many neighborhood circles. We thereby reduce the amount of unnecessary distance
calculations to determine the neighborhood of a vertex. This imbalance optimization
was discovered by Moritz von Looz and was confirmed on the Xeon Phi.

Using a schedule(type, chunk) OpenMP clause the type of work sharing in an
OpenMP loop can be adjusted:

• The chunk parameter determines the number of contiguous iterations a thread
is assigned at a time.

• The static scheduling type pre-allocates the iterations for each thread at com-
pile time. This turns out to be too inflexible for our algorithm, as the amount
of work per iteration very likely varies due to the widely varying degree of our
scale-free graphs.

• The dynamic scheduling type allocates a new chunk of iterations to a thread
as soon as the thread is finished with its current chunk.

• The guided scheduling type works in the same way as dynamic scheduling, but
exponentially decreases the chunk size after each allocation until it reaches the
parameter chunk. We observed similar performance using dynamic and guided
scheduling.

It is possible to control how OpenMP threads are placed on the physical cores using
the KMP_AFFINITY environment variable (see Figure 5.8):

31

32 5. Generation of Massive Complex Networks

CPU

Core 0

HT0 HT1 HT2 HT3

Core 1

HT0 HT1 HT2 HT3

0 1 2 3

(a) Compact thread affinity

CPU

Core 0

HT0 HT1 HT2 HT3

Core 1

HT0 HT1 HT2 HT3

0 3 1 2

(b) Scatter thread affinity

CPU

Core 0

HT0 HT1 HT2 HT3

Core 1

HT0 HT1 HT2 HT3

0 1 2 3

(c) Balanced thread affinity

Figure 5.8.: Illustration of KMP_AFFINITY thread affinity with 4 threads being placed
on an imaginary 2-core system with 4 threads per core.

• Compact thread affinity places the threads as close together as possible. For
the Xeon Phi this means that when run with 120 threads, they will only use
30 of the cores. This significantly reduces the performance by a factor of 1.4,
but not to a factor of 2, which would be expected if the computing power of
the cores was the limiting factor. Instead it shows that memory accesses are
also a limiting factor.

• Scatter thread affinity places the threads as far away from each other as pos-
sible.

• Balanced thread affinity is only available on the Xeon Phi architecture. It
spreads threads to physical cores in the same way as scatter affinity, but as-
sures that close thread numbers stay on the same core. This greatly improves
cache sharing between related threads that are more likely to have close thread
numbers. As this is not the case for our implementation, no significant perfor-
mance benefit can be measured.

5.3.2. Adaptation to Xeon Phi

Compared to the previous optimizations, the adaptation to the Xeon Phi requires
broader changes in the generation algorithm. The individual cores of the Xeon Phi
are slower than current general purpose processors and we need to fully exploit the
parallelism to use them effectively. Additionally, the 8GB of available memory are
too small to store a graph of interesting size. We address this with a semi-external
memory algorithm and store only the quadtree containing the vertex coordinates on
the card, while edges are streamed out to the host system after they are generated.
This approach is compatible with multiple Xeon Phi accelerator cards if they are
available.

The Xeon Phi card can be used in two ways: With full offloading, we generate all
edges on the Xeon Phi and only insert them into the graph on the host system.

32

5.3. Results 33

This allows the host system to work on other tasks, for example using the generated
graph on the fly. With partial offloading, as described in Chapter 4, Xeon Phi and
the host system both generate edges for parts of the graph in parallel, which is what
we use for our semi-external memory algorithm.

The parallel quadtree and point generation cannot be used on the Xeon Phi directly
if partial offloading or offloading to multiple cards is used. Because of randomness
in the generation and non-deterministic running order of threads, the cards would
end up with different vertex coordinates internally, causing the generated graph to
be inconsistent. Instead we create the quadtree on the host system and transfer it to
the Xeon Phi (or all of them). The code to generate the graph’s edges for a subset
of vertices is offloaded to the accelerator card. To keep the data transfer overhead
low, we use a double buffer on both sides: Once to transfer generated edges from the
Xeon Phi to the host system and subsequently to insert the received edges into the
graph structure. The general structure of this approach can be seen in Algorithm 2.

A difficulty in the transfer is the fact that the quadtree is a complex C++ object
containing other objects and C++ data structures, while OpenMP offloading only
supports the transfer of simple linear data structures. This has been solved by using
cereal, a C++11 header-only serialization library [28]. All relevant classes have
been annotated with serialization instructions. A binary stream is created from the
quadtree data structure, transferred to the Xeon Phi, and finally deserialized on it.
While this takes a significant amount of time, it is still faster than the quadtree
generation on the Xeon Phi itself, mainly because of the difficulty of efficiently
allocating memory on this platform.

Cereal 1.0.0 did not compile using Intel’s C++ compiler, but could be fixed by using
workarounds implemented for older GCC versions and Microsoft’s C++ compiler.
These issues have been fixed in a more recent version of the Cereal library by now.

210 212 214 216 218 220

0

20

40

vertices

se
co
n
d
s

single buffer
double buffer

Figure 5.9.: Running times for full offloading with and without double buffering for
dense graphs. Starting with 217 vertices at least two offloads are neces-
sary, allowing the double buffering to become effective.

The double buffering only affects running times when at least two offloads are nec-
essary, which starts at ≈ 108 edges. This speedup factor of two can be seen in

33

34 5. Generation of Massive Complex Networks

Algorithm 2: Double buffering solution to prevent latencies on the Xeon Phi and
host alike
Input: number of vertices n, number of edges m
Output: resulting graph graph

1 points = generatePoints(n, m);
2 quadtree = createQuadtree(points);
3 graph = newGraph();
4 phiIteration = 0;
5 #pragma transfer quadtree to Phi async
6 #pragma omp parallel for num threads(2)
7 for i = 0; i < n; i += part do

8 if omp get thread num() == 0 then

9 graph += generatePart(i, i+part);
10 end

11 else

12 if phiIteration == 0 then

13 #pragma wait for quadtree to be on Phi
14 end

15 if isEven(phiIteration) then

16 #pragma offload
17 buffer1 = generatePart(i, i+part);
18 if phiIteration > 0 then

19 wait until buffer1 has been handled;
20 end

21 #pragma transfer buffer1 from Phi async
22 if phiIteration > 0 then

23 #pragma wait until buffer2 is transferred
24 async graph += buffer2;

25 end

26 end

27 else

28 #pragma offload
29 buffer2 = generatePart(i, i+part);
30 if phiIteration > 1 then

31 wait until buffer2 has been handled;
32 end

33 #pragma transfer buffer2 from Phi async
34 #pragma wait until buffer1 is transferred
35 async graph += buffer1;

36 end

37 phiIteration += 1;

38 end

39 end

40 if not isEven(phiIteration) then

41 #pragma wait until buffer1 is transferred
42 graph += buffer1;

43 end

44 else if phiIteration > 0 then

45 #pragma wait until buffer2 is transferred
46 graph += buffer2;

47 end

48 Return graph;

34

5.3. Results 35

Figure 5.9, where dense graphs are generated and 108 edges correspond to 217 ver-
tices.

To take advantage of the 512-bit wide SIMD unit, we need to restructure the range
query loop. Algorithm 3 shows the baseline loop used on other platforms. It cannot
be vectorized in its current state because appending elements to Result introduces
a data dependency.

Algorithm 3: Baseline Range Query within Leaf

Input: query circle radius r, query circle center c, list of vertex positions pos, list
of vertex indices id

Output: list of vertices within query circle
1 Result = empty list;
2 cap = pos.size();
3 for i = 0; i <cap; i++ do

4 p = pos[i];
5 if (px − cx)

2 + (py − cy)
2 < r2 then

6 Result.append(id[i]);
7 end

8 end

9 Return Result;

Algorithm 4 in turn adds a level of indirection between the distance calculation and
neighborhood list generation. The distance calculations in lines 7 to 11 can then
be vectorized. The effectiveness of this change depends on the average degree: In
thin graphs the vast majority of considered neighbors are rejected and the second,
unvectorized loop (lines 13 to 16) has only few non-empty iterations. In experi-
mental results, the vectorized version of Algorithm 4 yields a speedup of about 1.5
over Algorithm 3. This is less than the theoretical optimum of 8, since only parts of
the algorithm can be vectorized and we use 64-bit integers in all relevant data struc-
tures, which limits the effect of vectorization compared to 32-bit integers. However,
communication and memory accesses are bigger contributors to the running time
and the effect of vectorization vanishes when considering the complete algorithm.
We implemented bit masks and De Bruijn sequences [29], but observed them to be
slower because of the additional computations and more complicated memory access
patterns.

Using static instead of dynamic or guided scheduling has the effect of slightly wors-
ening the load balance with partial offloading, compared to the non-offloading im-
plementation on the host system. Since the graph generation task is split into many
smaller tasks for offloading to the Xeon Phi, random fluctuations in point density
and thus thread workload have a greater effect than on the host system where they
balance out over the span of a large task. Since we have to wait for all threads to
be finished after every offloaded sub-computation, random fluctuations persist and
individual threads thus can run up to 1.35 times longer than others. Thus, using
guided or dynamic scheduling yields a speedup of 1.16 compared to static scheduling.

With all optimizations combined, a parallel speedup of over 100 is achieved compared
to the non-parallel solution on the Xeon Phi, see again Figure 5.5. This compares

35

36 5. Generation of Massive Complex Networks

Algorithm 4: Vectorizable Range Query within Leaf

Input: query circle radius r, query circle center c, list of vertex positions pos, list
of vertex indices id

Output: list of vertices within query circle
1 Result = empty list;
2 cap = pos.size();
3 Bits = boolean array of size cap, initialized to False;
4 #pragma ivdep
5 #pragma vector always
6 #pragma simd
7 for i = 0; i <cap; i++ do

/* This loop is vectorized */

8 p = pos[i];
9 if (px − cx)

2 + (py − cy)
2 < r2 then

10 Bits[i] = True;
11 end

12 end

13 for i = 0; i < cap; i++ do

/* Not vectorized */

14 if Bits[i] then
15 Result.append(id[i]);
16 end

17 end

18 Return Result;

well to other works for scaling graph algorithms on the Xeon Phi [9], especially for
complex networks.

The Xeon Phi can be used to offload the graph generation entirely, freeing the host
system to use the generated graph in parallel. Because of the large size of our graphs,
they do not fit into the card’s memory and intermediate results need to be sent to
the host system. Due to this communication bottleneck, we see lower speedups than
in existing literature, where communication is usually not considered as part of the
problem.

Our implementation enables the use of partial offloading, where the Xeon Phi and
the host system generate the graph simultaneously. However, this has not resulted
in significant speedups over a generation done completely on the host system, as is
shown in Figure 5.10. It was however observed that 4 to 8 threads are necessary
on the host system to efficiently handle the data transfers from the Xeon Phi, while
still leaving the host system with enough capacity to solve significant parts of the
problem by itself in parallel, as is depicted in Figure 5.11.

36

5.3. Results 37

0 0.5 1 1.5 2

·106

0

0.5

1

1.5

2

2.5

·104

vertices

ru
n
n
in
g
ti
m
e
[s
]

full offload
no offload

partial offload

Figure 5.10.: Performance comparison for no offloading (run the entire code on the
host system), full offloading (host system sends all parts of the problem
to the Xeon Phi) and partial offloading (host system and Xeon Phi both
solve parts of the problem) of the generation of a graph with variable
number of vertices.

1 2 4 8 16 32

14

15

16

threads phi-handling

ru
n
n
in
g
ti
m
e
[s
]

Figure 5.11.: Performance for partial offloading of the generation of a graph with
2.1·106 vertices and 6.8·109 edges, depending on the number of threads
that are set aside on the host system for communicating with the Xeon
Phi

37

CHAPTER 6

Graph Drawing using Graph

Clustering

(a) (b) (c) (d)

Figure 6.1.: Drawing of the 1138 bus graph by (a) PivotMDS [30], (b) PivotMDS(1),
(c) Maxent and (d) sfdp [31]. A red-to-green-to-blue scale is used to
encode the edge lengths from short to long, where edges shorter than
half the median edge length are red and those longer than 1.5 times the
median are blue.

6.1. Algorithm

In this chapter we work with a preliminary implementation of the multilevel maxent-
stress graph drawing algorithm developed by Meyerhenke et al. [32].

Full Stress Model

The graphs we consider have target lengths assigned to their edges. In such cases
the full stress model is promising. It models physical springs connecting all pairs
of vertices of the graph. The physical forces of the springs then push and pull
the vertices relative to each other and thereby create a layout of the graph, mini-
mizing the amount of stress energy in the system. This full stress model requires
the calculation of ideal distances between all pairs of vertices. Johnson’s algorithm
to calculate the shortest paths between all pairs of vertices in the graph requires
O(|V |2 log |V | + |V ||E|) time and O(|V |2) memory. This is too computationally
expensive for large graphs.

39

40 6. Graph Drawing using Graph Clustering

Maxent-Stress Model

An optimization to this model is proposed by Gansner et al. [31]. Instead of the full
stress model a sparse stress model is used, achieving only the pre-determined target
edge lengths. The remaining degree of freedom is then resolved by maximizing the
entropy of the layout, which gives the model its name, as it combines maximizing
entropy with a stress model. The maxent-stress model was shown to perform well in
the measure of full stress that remains in the graph after drawing it. Formally the
maxent-stress M(x) can be defined as

M(x) =
∑

{u,v}∈E

wuv (||xu − xv|| − duv)
2 − α

∑

{u,v}/∈E

ln ||xu − xv||, (6.1)

where duv is the target distance between nodes u and v, wuv = 1

d2
uv

is a weight
factor and the scaling factor α modulates the strength of the entropy term. This
maxent-stress M(x) is minimized by solving a series of linear systems.

(a) (b) (c)

(d) (e) (f)

Figure 6.2.: Original commanche graph (a) and drawings by (b) PivotMDS, (c) Piv-
otMDS(1), (d) PivotMDS(2), (e) Maxent and (f) Maxent(2) [31].

See Figures 6.1 and 6.2 for two examples of graphs drawn using the maxent-stress
model, in comparison to other graph drawing algorithms.

Multilevel Maxent-Stress Algorithm

The algorithm presented by Meyerhenke et al. [32] also aims to minimize the maxent-
stress, but does so by clustering the graph in multiple levels of hierarchy. Clusters
are contracted into new supervertices in each round, setting the weight of the new
vertex to the sum of the original vertex weights. At the coarsest hierarchy level
an initial layout is done, which is then improved on each finer level by iterating a
scheme to solve the maxent-stress model:

xu ←
1

ρu

∑

{u,v}∈E

wuv

(

xv + duv
xu − xv

||xu − xv||

)

+
α

ρu

∑

{u,v}/∈E

xu − xv

||xu − xv||2
, (6.2)

40

6.2. Porting 41

where ρu =
∑

{u,v}∈E wuv.

This approach additionally exploits the hierarchy, as densely connected vertices end
up in the same cluster and get drawn closer to each other [32].

While solving the linear system can not be parallelized, the multilevel maxent-stress
algorithm uses shared-memory parallelism in the form of OpenMP. New coordinates
of the vertices in the same iteration are computed independently in multiple threads
using equation 6.2. The distance approximations in the entropy term are parallelized
as well.

Two initial clusterings of the multilevel maxent-stress algorithm can be seen color-
coded into the resulting graphs in Figure 6.3.

(a) (b)

Figure 6.3.: Finished drawings with the clustering graph drawing algorithm, of the
rgg n 2 15 s0 (a) and commanche dual (b) graphs. Colors encode the
different initial clusters used in the algorithm.

6.2. Porting

While the graph generation algorithm was implemented inside NetworKit, the graph
drawing algorithm implementation is a stand-alone C++ program.

The considered graphs consist of up to 365 050 edges and therefore fit into the
memory of the Xeon Phi without any problems. This greatly simplifies the porting
process as the entire calculation can be run on the Xeon Phi, instead of offloading
parts of it from the host system, which we observed to be a major performance
impediment when large amounts of data have to be transferred.

The scons build file SConstruct was adapted to compile for the Xeon Phi, as can
be seen in Code Block 6.1.

A major obstacle again was the compilation of the source code libraries. Argtable,
the command-line option parsing library used, could be compiled with the following

41

42 6. Graph Drawing using Graph Clustering

Code Block 6.1 SCons instructions for Xeon Phi compilation with the Intel C/C++
compiler

env.Replace(CC = ’icc’)

env.Replace(CXX = ’icpc’)

env.Replace(AR = ’xiar’)

env.Replace(LD = ’xild’)

env.Replace(LINK = ’icpc’)

env.Append(CCFLAGS = ’-mmic’)

env.Append(CXXFLAGS = ’-mmic’)

env.Append(LINKFLAGS = ’-mmic’)

env.Append(CCFLAGS = ’-openmp’)

env.Append(CXXFLAGS = ’-openmp’)

env.Append(LINKFLAGS = ’-openmp’)

command, but required minor fixes in the source code to compile with the Intel
compiler:

CXX=icpc CC=icc CXXFLAGS=-mmic CFLAGS=-mmic ./configure

--host x86_64-k1om-linux && make

To find the functions isspace and toupper, the <ctype.h> header had to be in-
cluded. In some occurrences of pointer assignments Intel’s compiler is more strict
than GCC and Clang, so result = malloc(len); had to be changed to result =

(char*)malloc(len); in a few occurrences.

The second dependency of the code was Cairo, to render the final graph drawing.
The dependencies of Cairo itself, zlib, pixman1 and libffi could be compiled in a
similar manner to argtable. Unfortunately a bug in the integration of libffi to glib,
the last Cairo dependency, prevented a compilation for the Xeon Phi architecture.

Instead the drawing step was skipped, thereby eliminating the Cairo dependency.
The actual drawing can be performed just as well on the host system using the
calculated graph layout.

As a consequence of the lack of major dynamic allocations during the execution of
the algorithm, an alternative malloc implementation, like Intel TBB’s malloc, has a
much smaller effect.

The code contained a calculation distq = distq, which was useless as q was constantly
1 in the current implementation of the algorithm. This simple optimization in the
innermost hot loop speeds up the execution by a factor of 1.4.

Reducing the accuracy of calculations by using 32bit floats instead of 64bit doubles
is another potential route that can be used for speedups, but was not employed.
This allows for the Xeon Phi’s 512 bit SIMD unit to work with 32 values at once
instead of just 16.

In Code Block 6.2 an extraction of the inner loop of the algorithm’s implementation
is depicted, calculating the distances for a single vertex. Executed as a separate
single-threaded program, the code achieves a factor 6.1 speedup by auto-vectorizing

42

6.2. Porting 43

Code Block 6.2 Extraction of the inner loop of the graph drawing algorithm, which
is involved in the local optimization of the clusters

1 typedef unsigned int EdgeID;

2

3 struct refinementNode {

4 double partitionIndex;

5 double x;

6 double y;

7 };

8

9 refinementNode node;

10 unsigned int nodeID;

11 std::vector<refinementNode> targets(NUMBER_OF_NODES);

12

13 double n_S_x = 0;

14 double n_S_y = 0;

15

16 for(EdgeID target = 0, end = NUMBER_OF_NODES; target < end;

17 ++target) {

18 if(nodeID == target) continue;

19

20 // calculate the distance of node and targets[target]

21 double diffX = node.x - targets[target].x;

22 double diffY = node.y - targets[target].y;

23 double dist_square = diffX*diffX+diffY*diffY;

24 double dist = sqrt(dist_square);

25

26 n_S_x += diffX/dist;

27 n_S_y += diffY/dist;

28 }

the code, comparing -O3 -no-vec with -O3. This comes remarkably close to the
optimally possible factor 8 speedup, considering that we use 64bit double numbers
and use a 512bit SIMD unit for vector calculations. The success of automatic loop
vectorization can also be analyzed using the Intel compiler option -vec-report=7,
which reveals a potential speedup factor of 7.0 for the auto-vectorization performed,
as seen in Figure 6.4.

This effect can not be observed in the actual program, where vectorization only gives
a minor speedup, while parallelization gives a speedup factor of over 80. A possible
reason for this is that the vectorization is less advantageous when other calculations
have to be run at the same time and when the memory connection is fully busy
anyway. Additionally, we are running 4 threads for each of the 60 cores already,
further reducing the effect of vectorization.

43

44 6. Graph Drawing using Graph Clustering

LOOP WAS VECTORIZED

masked strided loads: 2

--- begin vector loop cost summary ---

scalar loop cost: 131

vector loop cost: 18.620

lightweight vector operations: 37

--- end vector loop cost summary ---

Figure 6.4.: Relevant part of the vectorization report created by the Intel Compiler

6.3. Results

Graph n m Description Reference

Small Graphs

rgg n 2 15 s0 32 768 160 240 Random Graph [33]
commanche 7920 11 880 Helicopter [33]
rajat06 10 922 18 061 Circuit Simulation [33]
delaunay n15 32 768 98 274 Delaunay Triangulation [34]

Large Graphs

luxembourg 114 599 119 666 Road Network [35]
nyc 264 346 365 050 Road Network [36]

Table 6.1.: Basic properties of benchmark set

Basic properties of the benchmark set are listed in Figure 6.1.

Graph Running time with Xeon Phi threads Host

1 2 4 8 15 30 60 120 240 32

rgg n 2 15 s0 201.4 102.1 52.6 27.9 16.5 10.0 7.2 5.9 5.3 3.6
commanche 225.2 110.9 56.5 27.4 15.9 8.2 4.7 3.2 2.6 3.5
rajat06 289.5 147.5 73.8 40.2 21.6 11.8 6.2 4.2 3.5 4.5
delaunay n15 576.7 289.3 146.1 76.7 41.8 23.7 13.5 9.5 7.8 9.0

luxembourg 11195.5 5711.4 2848.6 1420.3 794.0 409.5 215.4 130.9 89.5 166.5
nyc – – – 15935.9 8585.5 4357.2 2318.0 1401.56 960.0 1845.9

Table 6.2.: Running time (in seconds) of the graph drawing implementation with
variable number of threads on the Xeon Phi, as well as 32 threads on the
host’s 2 Intel Xeon CPUs for reference. A limit of 8 hours was imposed
and ”–“ denotes runs that did not finish within that time.

As can be seen in Table 6.2 the running time on a single Xeon Phi is lower than that
of the dual-socket Intel Xeon host system containing a total of 16 cores. Especially
for large graphs the Xeon Phi gains a large advantage, being up to 1.9 times as fast
on the New York City road network. In figure 6.5 we observe that the algorithm
does not scale as well on denser graphs such as rgg n 2 15 s0 and delaunay n15
compared to the sparse graphs.

44

6.3. Results 45

1 2 4 8 15 30 60 120 240

0

50

100

threads

sp
ee
d
u
p
fa
ct
o
r

luxembourg
commanche
rajat06

delaunay n15
rgg n 2 15 s0

Figure 6.5.: Speedup of the multilevel maxent-stress algorithm on the Xeon Phi

The main advantages of this algorithm is that it is good fit for parallelization and
vectorization. Additionally realistic and interesting data sets fit into the main mem-
ory of the Xeon Phi, and therefore complicated offloading constructs are unnecessary.
Under these conditions an existing implementation of a graph algorithm can be easily
ported to the Xeon Phi, leading to a significant speedup.

45

CHAPTER 7

Conclusion and Outlook

This work studied the process of porting complex algorithms implemented in the
form of high level C++ programs, including their libraries, to the Intel Xeon Phi
accelerator architecture. Performance benchmarks show that partial offloading of
large graph generation data sets does not yield performance improvements, but in
graph visualization the Xeon Phi can outperform a two-socket Intel Xeon (Sandy
Bridge) system. Various challenges and optimizations were considered and discussed.
The similarity of the Xeon Phi architecture to a regular multi-core CPU means that
many of the optimizations, such as reduced memory allocations and a lock-free
malloc implementation, lead to better performance on CPUs as well.

Not all algorithms are a good fit for porting to the Xeon Phi coprocessor architec-
ture. When memory is accessed more in an irregular manner than as a stream, the
benefit of the Xeon Phi’s GDDR5 memory disappears and memory latency becomes
a limiting factor. Parallelization and vectorization are necessary in concert to scale
beyond regular CPUs. Having to offload parts of the problem from the host system
to the Xeon Phi is problematic when large amounts of data have to be transferred
in either or both directions.

Nevertheless it was possible to achieve higher performance on the graph drawing
algorithm with the considerably cheaper Xeon Phi card than with the dual-socket
Intel Xeon system, using the same code base. For existing algorithm implementations
for CPUs the effort of porting to the Xeon Phi is significantly lower than that of
rewriting them for the vastly different GPU architectures. This marks an important
trade-off that has to be made, whether to use the more general and portable Xeon
Phi, or more parallel and problem specific GPUs. Highly irregular data access
patterns, as required for the parallel graph algorithms we studied, pose a problem
for the parallel memory access that is vital for high performance computing on
GPUs [37]. A direct comparison between similarly optimized implementations of
parallel graph algorithms for a GPU and Xeon Phi is a possible future research
topic in this area.

The new Xeon Phi coprocessor named Knights Landing is expected to be released
at the end of 2015 and promises to solve some of the observed deficiencies and will
be interesting for future research. A total of up to 72 more modern Airmont cores
promise single core performance increases. The increase of memory from currently
up to 16 GB to up to 384 GB will alleviate the need to offload parts of the data. Each

47

48 7. Conclusion and Outlook

of the cores will feature two 512-bit vector units instead of one, with an updated set
of SIMD instructions, as well as full x86 compatibility.

48

Bibliography

[1] “Opte Internet Maps,” http://www.opte.org/maps/, accessed: 2015-08-18.

[2] M. E. J. Newman, “The Structure and Function of Complex Networks,” SIAM
Review, vol. 45, no. 2, pp. 167–256, 2003.

[3] D. Papo, J. M. Buldú, S. Boccaletti, and E. T. Bullmore, “Complex network
theory and the brain,” Philosophical Transactions of the Royal Society of Lon-
don B: Biological Sciences, vol. 369, no. 1653, 2014.

[4] J. P. Thiery and J. P. Sleeman, “Complex networks orchestrate epithelial–
mesenchymal transitions,” Nature reviews Molecular cell biology, vol. 7, no. 2,
pp. 131–142, 2006.

[5] J. Abello, F. van Ham, and N. Krishnan, “ASK-GraphView: A Large Scale
Graph Visualization System,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 12, no. 5, pp. 669–676, Sept 2006.

[6] S. Kirmani and P. Raghavan, “Scalable Parallel Graph Partitioning,” in Pro-
ceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, ser. SC ’13. ACM, 2013, pp. 51:1–51:10.

[7] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz, “CPU DB:
Recording Microprocessor History,” Commun. ACM, vol. 55, no. 4, pp. 55–63,
Apr. 2012.

[8] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges in parallel
graph processing,” Parallel Processing Letters, vol. 17, no. 01, pp. 5–20, 2007.

[9] E. Saule and Ümit V. Çatalyürek, “An Early Evaluation of the Scalability of
Graph Algorithms on the Intel MIC Architecture,” in IPDPS Workshops’12,
2012, pp. 1629–1639.

[10] A. E. Sariyuce, E. Saule, K. Kaya, and U. V. Catalyurek, “Hardware/Software
Vectorization for Closeness Centrality on Multi-/Many-Core Architectures,” in
Parallel Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE
International, May 2014, pp. 1386–1395.

[11] E. Saule, K. Kaya, and U. Catalyurek, “Performance Evaluation of Sparse Ma-
trix Multiplication Kernels on Intel Xeon Phi,” in Parallel Processing and Ap-
plied Mathematics, ser. Lecture Notes in Computer Science, R. Wyrzykowski,
J. Dongarra, K. Karczewski, and J. Waśniewski, Eds. Springer Berlin Heidel-
berg, 2014, pp. 559–570.

49

http://www.opte.org/maps/

50 Bibliography

[12] F. Wende and T. Steinke, “Swendsen-Wang Multi-cluster Algorithm for the
2D/3D Ising Model on Xeon Phi and GPU,” in Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage and
Analysis, ser. SC ’13. ACM, 2013, pp. 83:1–83:12.

[13] C. Benthin, I. Wald, S. Woop, M. Ernst, and W. Mark, “Combining Single and
Packet-Ray Tracing for Arbitrary Ray Distributions on the Intel MIC Archi-
tecture,”Visualization and Computer Graphics, IEEE Transactions on, vol. 18,
no. 9, pp. 1438–1448, Sept 2012.

[14] J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High Performance Pro-
gramming, 1st ed. Morgan Kaufmann Publishers Inc., 2013.

[15] B. Li, H.-C. Chang, S. Leon Song, C.-Y. Su, T. Meyer, J. Mooring, and
K. Cameron, “The Power-Performance Tradeoffs of the Intel Xeon Phi on HPC
Applications,” in Parallel and Distributed Processing Symposium Workshops &
PhD Forum (IPDPSW). IEEE, 2014.

[16] M. Barth, K. Sweden, M. Byckling, C. Finland, N. Ilieva, N. Bulgaria, S. Saari-
nen, M. Schliephake, V. Weinberg, and L. Germany, “Best Practice Guide Intel
Xeon Phi v1.” 2013.

[17] T. Cramer, D. Schmidl, M. Klemm, and D. an Mey, “OpenMP Programming
on Intel R Xeon Phi TM Coprocessors: An Early Performance Comparison,”
2012.

[18] J. Reinders, “An Overview of Programming for Intel R© Xeon R© processors and
Intel R© Xeon PhiTM coprocessors,” by Intel Corporation, 2012.

[19] “Nim Programming Language,” http://nim-lang.org/, accessed: 2015-08-18.

[20] “Intel Intrinsics Guide,” https://software.intel.com/sites/landingpage/
IntrinsicsGuide/, accessed: 2015-08-18.

[21] Q. K. Telesford, K. E. Joyce, S. Hayasaka, J. H. Burdette, and P. J. Laurienti,
“The Ubiquity of Small-World Networks.”Brain Connectivity, vol. 1, no. 5, pp.
367–375, 2011.

[22] D. J. Watts and S. H. Strogatz, “Collective dynamics of’small-world’networks.”
Nature, vol. 393, no. 6684, pp. 409–10, 1998.

[23] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá, “Hy-
perbolic geometry of complex networks,” Physical Review E, vol. 82, Sep 2010.

[24] L. Gugelmann, K. Panagiotou, and U. Peter, “Random Hyperbolic Graphs:
Degree Sequence and Clustering,” in Automata, Languages, and Programming,
ser. Lecture Notes in Computer Science, A. Czumaj, K. Mehlhorn, A. Pitts,
and R. Wattenhofer, Eds. Springer Berlin Heidelberg, 2012, vol. 7392, pp.
573–585.

[25] M. von Looz, C. Staudt, R. Prutkin, and H. Meyerhenke, “Fast generation of dy-
namic complex networks with underlying hyperbolic geometry,” arXiv preprint,
2015.

[26] J. Anderson, Hyperbolic Geometry, ser. Springer Undergraduate Mathematics
Series. Springer London, 2006.

50

http://nim-lang.org/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Bibliography 51

[27] C. Staudt, A. Sazonovs, and H. Meyerhenke, “NetworKit: An Interactive Tool
Suite for High-Performance Network Analysis,”CoRR, 2014.

[28] “cereal - A C++11 library for serialization,” http://uscilab.github.io/cereal/,
accessed: 2015-08-18.

[29] N. G. de Bruijn, “A Combinatorial Problem,” Koninklijke Nederlandsche
Akademie Van Wetenschappen, vol. 49, no. 6, pp. 758–764, Jun. 1946.

[30] U. Brandes and C. Pich,“Eigensolver Methods for Progressive Multidimensional
Scaling of Large Data,” in Graph Drawing, ser. Lecture Notes in Computer
Science, M. Kaufmann and D. Wagner, Eds. Springer Berlin Heidelberg, 2007,
vol. 4372, pp. 42–53.

[31] E. Gansner, Y. Hu, and S. North, “A Maxent-Stress Model for Graph Layout,”
Visualization and Computer Graphics, IEEE Transactions on, vol. 19, no. 6,
pp. 927–940, June 2013.

[32] H. Meyerhenke, M. Nöllenburg, and C. Schulz, “Drawing Large Graphs by Mul-
tilevel Maxent-Stress Optimization,”CoRR, 2015.

[33] “The University of Florida Sparse Matrix Collection,”https://www.cise.ufl.edu/
research/sparse/matrices/, accessed: 2015-08-18.

[34] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, Eds., Graph Partition-
ing and Graph Clustering - 10th DIMACS Implementation Challenge Workshop,
Georgia Institute of Technology, Atlanta, GA, USA, February 13-14, 2012. Pro-
ceedings, ser. Contemporary Mathematics, vol. 588. American Mathematical
Society, 2013.

[35] D. A. Bader, H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes, and D. Wagner,
“Benchmarking for graph clustering and partitioning,” in Encyclopedia of Social
Network Analysis and Mining, 2014, pp. 73–82.

[36] C. Demetrescu, A. V. Goldberg, and D. Johnson, Eds., The Shortest Path Prob-
lem: 9th DIMACS Implementation Challenge, vol. 74. American Mathematical
Society, 2009.

[37] F. Dehne and K. Yogaratnam, “Exploring the Limits of GPUs With Parallel
Graph Algorithms,”CoRR, 2010.

51

http://uscilab.github.io/cereal/
https://www.cise.ufl.edu/research/sparse/matrices/
https://www.cise.ufl.edu/research/sparse/matrices/

Appendix

A. Glossary

AVX

Modern SIMD instruction set extension, appeared in 2011. Together with
AVX2 expands SIMD registers to 256 bits and offers new instructions for more
parallelism.

Cache Line

Fixed size block which is transferred between the memory and cache.

Cache Miss

When a cache is consulted, but does not contain the data from the desired
memory location. The data then has to be fetched from a higher level cache
or the main memory and is subsequently stored in the cache.

Cilk Plus

Parallel programming language by Intel based on C and C++, supporting high
level multithreading and vectorization constructs. Originally developed as Cilk
and Cilk++ by the group of Charles E. Leiserson at MIT.

Clock Frequency

The frequency at which a processor is running, indicates the performance
within a CPU family. Power consumption and heat dissipation have placed a
limit on clock frequency for the last 10 years.

Complex Network

Graph with non-trivial topological features, such as being scale-free and small-
world. These features do not occur in simple networks or random graphs, but
often in graphs based on real-world data.

Coprocessor

Processor that is used inside of another computer to support the CPU.

FSM Full Stress Model
Model for graph drawing that models physical springs connecting all pairs
of vertices of the graph. The physical forces of the springs push and pull
the vertices relative to each other and thereby create a layout of the graph,
minimizing the amount of stress energy in the system.

GCC GNU Compiler Collection
Originally GCC stands for the GNU C Compiler, now also extended to compile
C++ and other languages. One of the most widely used optimizing compilers.

53

54 7. Appendix

GDDR5 Graphics Double Data Rate, type five
Memory type used by the Xeon Phi coprocessor. Originally designed for graph-
ics cards.

glibc GNU C Library
The standard C library most commonly used in combination with the Linux
kernel.

Graph Drawing

Drawing graphs is the problem of representing them in a pictorial layout,
making their features more easily perceptible for humans. Furthermore graph
drawing can be used as a preliminary step in other applications such as graph
partitioning.

Graph Generation

Algorithm that generates graphs based on a set of parameters. Can be used
when real-world data can not be used because of privacy or scalability reasons.
Graph generation algorithms can be used to create realistic complex networks
for the specific use case.

GPU Graphics Processing Unit
Stream processor used in computer graphics hardware and increasingly for
general purpose computation.

Hyperbolic Geometry

Non-Euclidean geometry with all Euclidean postulates intact except for the
parallel postulate. Especially relevant to us is the property of exponential
expansion of space of hyperbolic geometry. This means that the area of a
circle grows exponentially with the distance from the center.

HT Hyper-Threading
Proprietary implementation of simultaneous multithreading (SMT) in Intel’s
CPUs and also the Xeon Phi coprocessor.

ICPC Intel C++ Compiler
Proprietary compiler by Intel for the C++ programming language, which can
perform advanced automated vectorizations and supports the Intel Xeon Phi
architecture.

IMCI Initial Many Core Instructions
Name for the new instruction set available in the Xeon Phi Knights Corner
coprocessor, including 512-bit wide SIMD instructions.

In-order Processor

Type of processor design used in old and simple processors and the Xeon Phi
coprocessor, executing each instruction in the same order as it is specified in
the program. In contrast to out-of-order execution which reorders instructions
to prevent delays.

Instruction Pipeline

Technique used in CPU design to increase the speed of instruction execution.
Breaks up an instruction cycle into a sequence of steps, enabling parallel exe-
cution of different steps.

54

A. Glossary 55

KiB Kibibyte
1024 bytes, whereas a KB (Kilobyte) means 1000 bytes.

L1 Cache

The level 1 cache of a CPU, the fastest and smallest cache.

L2 Cache

The level 2 cache of a CPU, bigger but slower than the level 1 (L1) cache.

malloc

Standard function in the C programming language to allocate dynamic memory
on the heap. Size of the allocation can be specified at runtime.

MIC Many Integrated Core Architecture
The architecture of the Xeon Phi coprocessor.

MIMD Multiple Instruction Multiple Data
Technique to achieve parallelism. 60 cores and 240 threads are available on
the Xeon Phi for MIMD parallelism.

MPI Message Passing Interface
Standardized interface for message-passing systems, implemented for many
shared and distributed memory systems. Available for C, C++, Fortran and
other languages.

Neighborhood

The set of vertices (neighbors) directly connected to a vertex in a graph.

NetworKit

High performance open-source network analysis toolkit written in C++ that
exposes the algorithms to Python as well.

OpenMP Open Multi-Processing
Set of compiler directives (pragmas), library routines and environment vari-
ables for shared memory multiprocessing, available in C, C++ and Fortran.
When a compiler does not understand OpenMP or the interpretation of OpenMP
directives is disabled, the source code is still interpreted as a valid non-parallel
program.

OpenMP Offloading

Executing the main program on a host system, while offloading parts of the
program to an accelerator card such as the Xeon Phi.

Scale-Free Network

Network with a power-law degree distribution. The number of nodes with
degree k is proportional to k−γ for a fixed γ > 0. This implies that there are
a few high-degree nodes, so called hubs, and many low-degree nodes. Random
graphs on the other hand have an exponential degree distribution.

Shared Memory Architecture

Multiprocessing design where processors or processor cores have access to a
globally shared memory. In contrast to distributed memory architecture, in
which each processor system has only access to its own memory.

55

56 7. Appendix

SIMD Single Instruction Multiple Data
Processing multiple pieces of data with the same operation to exploit data
level parallelism. SIMD instructions are available in modern CPUs.

Small-World Network

Common class of networks, so called after the small-world phenomenon that
postulates that all people are connected to each other by only six degrees
(or another small number) of separation. For small-world networks a high
clustering coefficient is typical as well.

SMT Simultaneous Multithreading
Technique for improving the efficiency of superscalar CPUs with hardware
multithreading, executing multiple independent threads on a single physical
processor core.

TBB Threading Building Blocks
High level C++ template library developed by Intel, containing data struc-
tures, algorithms and high level algorithmic skeletons for parallel program-
ming.

VPU Vector Processing Unit
Unit of the Xeon Phi that processes vector (SIMD) operations.

x86-64

64-bit version of the x86 CPU instruction set, based on, and retaining full
compatibility to, the original Intel 8086 CPU from 1978. Most common CPU
instruction set in many settings, such as supercomputers, servers and PCs.

x87

Originally an extension to the 8086 processor, today the floating point related
instruction subset of the x86 architecture.

Xeon

The name of Intel’s current x86-64 CPUs for workstations and servers.

Xeon Phi

Coprocessor architecture by Intel with many cores and a 512-bit wide SIMD
unit. Was originally in development since 2006 as the unreleased Larrabee ar-
chitecture. First products have been released under the name Knights Corner
in 2012. A new release of Xeon Phi coprocessors is planned for the end of 2015.

56

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Notation and Preliminaries
	1.4 Outline

	2 Related Work
	3 Intel Xeon Phi Coprocessor
	3.1 Core Pipeline
	3.2 Caches and Memory
	3.3 Vector Processing Unit
	3.4 Programming

	4 Software Technologies for Vectorization and Parallelization
	4.1 Parallelization
	4.1.1 OpenMP
	4.1.2 OpenMP Offloading
	4.1.3 Cilk Plus
	4.1.4 Threading Building Blocks
	4.1.5 MPI

	4.2 Vectorization
	4.2.1 Manual vectorization
	4.2.2 Auto-Vectorization
	4.2.3 Cilk Plus

	4.3 Platform

	5 Generation of Massive Complex Networks
	5.1 Algorithm
	5.2 Implementation
	5.3 Results
	5.3.1 General optimizations
	5.3.2 Adaptation to Xeon Phi

	6 Graph Drawing using Graph Clustering
	6.1 Algorithm
	6.2 Porting
	6.3 Results

	7 Conclusion and Outlook
	Bibliography
	Appendix
	A Glossary

