
Automating Regression Verification

Dennis Felsing

Abstract. Regression verification is an approach to prevent regressions
in software development using formal verification. The goal is to prove
that two versions of a program behave equally or differ in a specified way.
We have extended Strichman and Godlin’s approach [4,5] for regression
verification by relational equivalence and two ways of using counterex-
amples to refine verification conditions. Furthermore, we have developed
a new approach for program equivalence that reduces the equivalence of
two programs to Horn constraints over uninterpreted predicates and uses
state-of-the-art SMT solvers like Z3 and Eldarica to find these predicates.
We have implemented and evaluated our approach and found promising
results on a set of non-trivial integer programs that can be proved equiv-
alent automatically.

1 Introduction

Preventing unwanted behaviour, commonly known as regressions, is a
major concern during software development. Currently the main quality
assurance measure during development is regression testing. Regression
testing uses a manually crafted test suite to check the behaviour of new
versions of a program.

For example, consider the following two functions in ANSI C in Fig-
ure 1, which both calculate the greatest common divisor of two positive
numbers:

int gcd1(int a, int b) {

if (b == 0) {

return a;

} else {

a = a % b;

return gcd1(b,a);

}

}

int gcd2(int x, int y) {

int z = x;

if (y > 0) {

z = gcd2(y, z % y);

}

return z;

}

Fig. 1: Example functions calculating the GCD

To test such a function, multiple test cases would have to be written
to cover the entire function behaviour. Designing such regression tests
requires such an amount of manual work that typically more than 50%

of the development time is spent on designing test cases [7]. Still, there
is no guarantee of finding all introduced bugs.

Another approach to this problem is formal verification: The functions
gcd1 and gcd2 can individually be proved correct with respect to a formal
specification of the greatest common divisor, which would imply their
equivalence. This requires the software engineer to provide said formal
specification. Additionally, it is often necessary to manually guide the
proof.

Regression verification offers the best of both worlds: As in formal ver-
ification, full coverage is achieved and no test cases are required. No
formal specification of function behaviour is required, just as in regres-
sion testing. Instead of comparing the two programs to a common formal
specification, regression verification compares them to each other. The
old program version serves as specification of the correct behaviour of the
new one. Note that the “correctness” that regression verification proves
is different from that shown using formal verification: In formal verifica-
tion there may be a degree of freedom for the program behaviour, that
allows bugs to be introduced if the specifaction does not fully capture
the behaviour of a function.

In regression verification the use of an old program version as specifica-
tion assures that the full behaviour is preserved, so no new bugs can be
introduced at all.

So far regression verification is limited to proving functional relations,
such as equivalence, between program versions. Regression testing on the
other hand can also be employed to test for nonfunctional requirements,
such as performance.

Our contribution is the implementation and extension of the automatic
regression verification approach by Strichman and Godlin, as well as the
implementation and evaluation of a new approach for regression verfica-
tion.

The rest of this paper is structured as follows: In Section 2 Strichman
and Godlin’s approach, which uses uninterpreted functions for regres-
sion verification, is presented and extended. In Section 3 we detail a new
approach we developed which performs program equivalence proofs by
constraining uninterpreted predicates. Finally in Section 4 the imple-
mentation and evaluation of this approach are presented.

2 Overapproximation using uninterpreted

functions

An initial approach for regression verification has been developed by
Strichman and Godlin [4] and is illustrated in Figure 2.

Proving equivalence of gcd1 and gcd2 is difficult since the programs
call themselves recursively, potentially an unbounded number of times.
Strichman and Godlin propose to replace recursive calls by the same
placeholder in both programs, a so called uninterpreted function U . They
compare the main rule describing their approach to Hoare’s rule for re-
cursive invocation:

Function r = gcd1(a, b)

gcd1 without recursions

Static Single
Assignment Sgcd1

Function z = gcd2(x, y)

gcd2 without recursions

Static Single
Assignment Sgcd2

(a = x ∧ b = y ∧ Sgcd1 ∧ Sgcd2) → r = z

Valid / Invalid

SMT Solver

Fig. 2: Regression verification approach by Strichman and Godlin

[Hoare’s rule for recursive invocation] was described by Hoare
as follows: The solution... is simple and dramatic: to permit the
use of the desired conclusion as a hypothesis in the proof of the
body itself. The correctness of [the rule] is proved by induction,
where the base case corresponds to the base(s) of the recursion,
namely the nonrecursive run(s) through the procedure. ([5])

Consider the two functions in Figure 1. Initially we transform them by
simply replacing the recursive function calls by an uninterpreted function
U , as can be seen in Figure 3.

int gcd1(int a, int b) {

if (b == 0) {

return a;

} else {

a = a % b;

return U(b,a);

}

}

int gcd2(int x, int y) {

int z = x;

if (y > 0) {

z = U(y, z % y);

}

return z;

}

Fig. 3: Replaced function calls with calls to the uninterpreted function U

The next step is to transform the bodies of these functions to static single
assignment (SSA) form. Subsequently SSA formulas are constructed as a
conjunction of assignments expressed as equalities. These formulas model
the behaviour of gcd1 and gcd2 respectively, relating function outputs
to inputs. This means that in all assignments of the form x := exp; we
replace x with a new unused variable xi. Every conjunct of the SSA
formula represents a state of the corresponding procedure.
Hence, Sgcd1 and Sgcd2 imply the equality of respective output values
(resultgcd1 = resultgcd2), assuming equality of inputs (a = x ∧ b =

Sgcd1 =

a0 = a ∧

b0 = b ∧

b0 = 0 → result0 = a0 ∧

b0 6= 0 → a1 = a0%b ∧

b0 6= 0 → result1 = U(b0, a1) ∧
resultgcd1 = result1

(a) SSA formula of gcd1

Sgcd2 =

x0 = x ∧

y0 = y ∧

z0 = x0 ∧

y0 > 0 → z1 = U(y0, (z0 % y0)) ∧
y0 ≤ 0 → z1 = z0 ∧

resultgcd2 = z1

(b) SSA formula of gcd2

Fig. 4: Example of transforming functions into static single assignment formulas

y). The following formula can now be constructed to express functional
equivalence:

(a = x ∧ b = y
︸ ︷︷ ︸

Equal inputs

∧ Sgcd1 ∧ Sgcd2) → r = z
︸ ︷︷ ︸

Equal outputs

(1)

This formula is passed to an SMT solver, like Z3 or Eldarica, which can
have three results:

1. The SMT solver proves the formula (1) valid:. This implies the two
functions are actually equal.

2. The SMT solver finds a counterexample dissatistfying (1). As we
overapproximate the recursive function calls, this does not necessar-
ily imply actual inequality.

3. The SMT solver times out.

Strichman and Godlin use the bounded model checker CBMC to prove
this formula for C programs on bitvectors.

We implemented this approach in the tool simplRV (Simple Program-
ming Language Regression Verification), which is capable of performing
regression verification on unbounded integer and array functions in a
simple imperative programming language featuring recursions as well as
loops, but no global variables. For this programming language we use an
interpreter developed in a student project in the tool Kammerjäger.

simplRV produces an SMT formula which is passed to state-of-the-art
SMT solvers like Z3 and Eldarica. Our implementation differs from that
provided by Strichman and Godlin in their RVT tool. Instead of building
a logical formula, RVT creates a C function that calls the functions to be
compared with the same, but uninterpreted, inputs, and compares their
results. Instead of an SMT solver, the bounded model checker CBMC is
then used to verify this new function.

We developed and implemented the following extensions to the existing
approach within simplRV :

Conditional Equivalence Total equivalence between the functions to
be compared is not always desired. Consider our example in Figure 1:
The proof of equality fails for negative numbers, but one can imagine
that these functions are only called with positive numbers. In this case
we require conditional equivalence for nonnegative inputs by assuming
an additional precondition a ≥ 0:

(a ≥ 0 ∧ a = x ∧ b = y ∧ Sgcd1 ∧ Sgcd2) → r = z (2)

Another common example for conditional equivalence are bug fixes in the
program. Once a bug has been fixed, an equivalence proof is still desirable
to prevent the introduction of new bugs. But simple equivalence of all
outputs for all inputs would not be correct in this case. Instead the case
of the bug fix have to be excluded using a precondition.

Relational Equivalence We implemented relational equivalance (de-
noted as “≃”), which is a superset of conditional equivalence, so that
the user can specify relations between the inputs and outputs of func-
tions. An example for this are functions which are off by one in a new
version, but otherwise should still behave equally. By default equality is
used as the relation.

Counterexamples Our tool makes use of counterexamples returned by
the SMT solver on a failed proof. The functions are automatically run
on the input values of the counterexamples. If their outputs differ, the
programs are not equivalent and the user is informed about this with the
counterexample.

Additional Information Spurious counterexamples can be returned by
the SMT solver because we overapproximate the functions using an un-
interpreted function. We use the information won from spurious coun-
terexamples as additional constraints on the uninterpreted function U

and rerun the proof. This is a decision procedure for the cases where all
function arguments are inductive in their recursive calls.

A summary of our extensions to the initial approach is given in Figure 5.

Using a collection of examples from various sources including compiler
optimizations, refactorings and other publications we evaluated our ap-
proach and found it to work well for a wide range of examples.

Utilizing the information of spurious counterexamples can lead to an
endless loop of new spurious counterexamples. These so called edge cases
occur when at least one of multiple parameters is not inductive. Proving
equivalence of functions of this kind is a limitation of the approach just
described. A more intricate view on the problem can help, which we will
discuss in the next section.

Function r = gcd1(a, b)

gcd1 without recursions

Static Single
Assignment Sgcd1

Function z = gcd2(x, y)

gcd2 without recursions

Static Single
Assignment Sgcd2

(a ≃ x ∧ b ≃ y ∧Sgcd1 ∧ Sgcd2∧ U(0, 1) = 0) → r1 ≃ r2

Valid / Invalid U(0, 1) = 0

SMT Solver

Execute

Add

Fig. 5: Extended regression verification approach

3 Approximation using uninterpreted

predicates

So far we overapproximated recursive function calls using an uninter-
preted function, so that we transform r = gcd1(a, b) and z = gcd2(x, y)
into a formula of the pattern

∀U.(
∧

i

ϕ → ∀U. . . . ∧ Sgcd1 ∧ Sgcd2 → r = z). (3)

We can modify this by abstracting both recursive calls using a single
predicate R, a so called mutual function summary, that describes the
relation between the arguments and result values of both recursive calls
to one another:

∃R.(. . . ∧R(a, b, r, x, y, z)) → r = z. (4)

We use the same symbolic execution of both functions as before. The
only difference is in the interesting part, the handling of recursive calls.

Universal quantification over all uninterpreted functions U was implicitly
assumed in the first approach. Now instead of showing that the formula
is true for all predicates U , we have to find a single common predicate
R that satisfies the formula.

The mutual function summary replaces and approximates the recursive
function calls. It is required that the mutual function summary R is a
faithful abstraction, which is achieved by making it model both functions’
behaviour.

In the cases where only one function recurses, an uninterpreted func-
tion summary R1 for the first function, respectively R2 for the second
function, is inserted instead. These predicates only relate one function’s
inputs to its outputs, just like the uninterpreted functions in the previous
approach.

State-of-the-art SMT solvers like Eldarica and Z3 can be used to auto-
matically infer a predicate R, which satisfies our requirements, namely
is a faithful abstraction of the behaviour of both functions and implies
the equivalence of outputs.
We developed a similar approach for functions containing while loops in-
stead of recursive function calls. An uninterpreted mutual loop invariant
C is used as a predicate relating the variables in a loop after each loop
iteration. The invariant C is true at the start of the loop. Assuming C to
hold, after the single execution of both loop bodies, the invariant C holds
again, relating the values in both loops to each other. Once neither loop
guard holds, the mutual loop invariant C is used to imply the equality of
the rest of the functions. In this approach an invariant C can be inferred
automatically as well.
In order to derive invariants and mutual loop invariants verification con-
ditions are represented in form of Horn clauses over uninterpreted re-
lation symbols. A big advantage of our approach is that the invariants
and mutual loop invariants for similar programs are linear, which makes
them easy to automatically infer.

4 Implementation and Experiments

Implementation We have implemented our second approach for a sub-
set of ANSI C in a tool named Rêve

1. Program data is limited to local
variables and function parameters of type int, which is interpreted as un-
bounded (mathematical) integers. Bounded integers can be simulated by
instrumenting programs with modulo operations, at the cost of increased
reasoning complexity. Supported control structures are if-then-else and
while statements, function calls and returns. The return statement must
always be the last statement of a function and must return a local vari-
able. Recursive function calls may not occur within the conditions of if
or while statements. Using our tool, pairs of recursive functions as well
as functions containing while loops can be proven equivalent, but not
functions containing both recursive calls as well as while loops.
The tool (i.e., the wlp calculus) is implemented in Standard ML. As Horn
constraint solvers we used Z3 (unstable branch, 2013-11-27) and Eldarica
(version from 2014-04-16).

Experiments We have evaluated the effectiveness and performance of
our tool on a collection of benchmarks. The benchmarks vary in size
from 10–50 lines of code (for both programs together). Benchmark re-
sults are summarized in Table 1. We also give results from the only
automatic tool that is directly comparable to ours, the Regression Veri-
fication Tool (RVT) by Strichman and Godlin [4].
The programs in the first group in Table 1 are recursive, while the ones
in the second group contain loops. Benchmarks where the two programs
were not equivalent are in the third group, and their names end with
a bang (!). All other benchmarks contain equivalent programs; the ✗

outcome is in this case a false negative.

1
Rêve is available at http://formal.iti.kit.edu/improve/ase2014/

http://formal.iti.kit.edu/improve/ase2014/

Benchmarks limit1 to limit3 were given by Strichman and Godlin as
beyond the limits of their approach to regression verification. Bench-
marks barthe2-big and barthe2-big2 embed the benchmark barthe2

into a larger program that is syntactically identical in both versions.
We could not prove equivalent the ackermann benchmark, as the result
of a recursive function call is used as the argument to another recur-
sive function call. Furthermore, we originally could not prove the limit1
benchmark, as two steps of the first loop are equivalent to one step of
the second loop, an issue that we solve in the next section and illustrate
with the larger digits10 benchmark.

The triangular-mod benchmark corresponds to the illustrating example
instrumented with modulo operations to simulate integer overflow.

As far as we are aware, RVT does not supply additional information to
assist the user in case of a failed proof attempt. While, in theory, the
model checker underlying RVT produces a counterexample, such a coun-
terexample can be spurious due to the fixed abstraction employed. The
Eldarica solver that we use, in contrast, returns a genuine counterex-
ample for many failed proofs. We found these counterexamples useful in
diagnosing problems with the programs, even though we currently do
not translate these counterexamples into source code terms.

4.1 An Example for Loop Equivalence

We consider a real-world example from [1]. The program P1 in Figure 6(a)
computes the number of digits in the decimal expansion of n through a
series of integer divisions by 10. The program P2 in Figure 6(c) com-
putes the same result but (asymptotically) about seven times faster.
This speedup is accomplished by reducing the strength of operations.
The loop has been unrolled four times2 and the majority of divisions
have been replaced by pure comparisons.

Unsurprisingly, P1 and P2 cannot be proved equivalent automatically. To
do so, the tool would in the least need to figure out the (very complex)
relation between one iteration of the loop in P1 and four iterations of
the loop in P2. To overcome this barrier, the software engineer needs to
supply to the tool the knowledge that an unrolling transformation took
place. At the moment, we achieve this transfer by manually carrying out
the unrolling on P1 and producing the intermediate program P

′

1 shown in
Figure 6(b). We then prove automatically that P ′

1 and P2 are equivalent.
Note that P

′

1 is still significantly different from P2, as unrolling is not
the only optimization that has been performed originally. The program
P

′

1 still performs four times as many divisions as P2. The if-conditions
directly follow the divisions and depend on them, which slows the pro-
gram down, while the four if-conditions in P2 are all dependent on the
same division result.

2 Loop unrolling is a simple transformation, in which the loop body is replicated within
the loop and guarded by the loop guard. This transformation preserves the semantics
of the program.

int f(int n) {

int r = 1;

n = n/10;

while (n > 0) {

r++;

n = n / 10;

}

return r;

}

int f(int n) {

int r = 1;

n = n/10;

while (n > 0) {

r++;

n = n / 10;

if (n > 0) {

r++;

n = n / 10;

if (n > 0) {

r++;

n = n / 10;

if (n > 0) {

r++;

n = n / 10;

}

}

}

}

return r;

}

(a) basic version P1 (b) intermediate version P
′

1

int f(int n) {

int r = 1;

int b = 1;

int v = -1;

while (b != 0) {

if (n< 10) { v = r; b = 0; }

else if (n< 100) { v = r+1; b = 0; }

else if (n< 1000) { v = r+2; b = 0; }

else if (n <10000) { v = r+3; b = 0; }

else {

n = n / 10000;

r = result + 4;

}

}

return v;

}

(c) optimized version P2

Fig. 6: Computing the number of digits (digits10) from [1]

Table 1: Benchmark results

Run time (seconds)

Benchmark RVT R
ê
v
e
+

Z
3

R
ê
v
e
+

E
ld
a
ri
ca

Source

ackermann 0.8 − − [4]
mccarthy91 1.1 1.8 1.7 [4]
limit1 ✗ − − [4]
limit2 ✗ − 5.2 [4]
limit3 ✗ − 4.5 [4]
add-horn ✗ − 4.3
triangular ✗ − 3.3
triangular-mod ✗ − −

inlining ✗ − 5.7

simple-loop 0.8 0.1 5.3
loop ✗ − 2.8
loop2 ✗ − 3.2
loop3 ✗ − 5.4
loop4 ✗ − 27.4
loop5 ✗ − 26.4
while-if ✗ − 3.8
digits10 ✗ − 11.3 [1]
barthe ✗ − 4.8 [2]
barthe2 0.5 10.2 3.9 [2]
barthe2-big 1.6 − 5.7
barthe2-big2 1.7 − 8.0
bug15 1.0 0.1 1.8 [4]
nested-while 1.5 − 5.2 [4]

ackermann! ✗ 0.1 4.9
limit1! ✗ 0.0 1.4
limit2! ✗ 0.7 10.9
add-horn! ✗ 0.1 1.9
triangular-mod! ✗ 0.5 28.1
inlining! ✗ 0.1 2.7
loop5! ✗ 0.0 2.2
barthe! ✗ 1.8 21.9
nested-while! ✗ 0.1 5.2

Dash (−) denotes timeout at 600 seconds, cross (✗) denotes that the tool terminates
but cannot prove equivalence. All times have been measured on a 2.5 GHz Intel Core2
Quad machine.

After 11.3 seconds, Rêve with Eldarica succeeds in proving equivalence
with the following automatically inferred coupling predicate:

(b2 = 1 ∧ r1 = r2 ∧ 10n1 ≤ n2 ∧ n2 ≤ 10n1 + 9)

∨ (b2 = 0 ∧ r1 = v2 ∧ n2 ≥ 10n1 ∧ n1 ≤ 0)

Here, n1 and r1 denote the variables of P ′

1, and n2, b2, r2 the variables
of P2. The variable b2 indicates whether the loop will (b2 = 1) or will
not (b2 = 0) be executed once more. The coupling predicate is hence a
disjunction over these two cases: While the loop is iterated, r1 and r2
hold the same value and n1 is one division by 10 ahead of n2, i.e., n1 =
n2 div 10. Exactly this fact is expressed by the linear constraint 10n1 ≤

n2 ∧ n2 ≤ 10n1 + 9. When the loop of P2 has finished, its negated loop
guard n1 ≤ 0 holds and the final results are stored in r1 and v2.

4.2 Discussion

In addition to the promising experimental results, we argue below that
our procedure is applicable for a wide range of practical regression ver-
ification problems. On the other hand, since our method exploits struc-
tural similarities between the compared programs, it cannot be expected
to perform well when exchanging complete algorithms, or when chang-
ing the design of a system in a fundamental way. For example, replacing
a bubble sort procedure with a quicksort within a bigger program may
preserve overall behavior, but automatically proving this is currently not
feasible.

Our method works well whenever sufficiently “simple” coupling predi-
cates exist that prove program equivalence. This applies to a number of
important cases:

– as a baseline, our procedure will always be able to prove that a
program is equivalent to itself, by applying a greedy reduction, and
choosing the coupling predicates x̄1 = x̄2.

– the procedure is also complete when applied to two programs with
the same control structure, and locally equivalent (but not neces-
sarily identical) loop and function bodies. In this case, the same
coupling predicates x̄1 = x̄2 can be chosen for the entry points of
the bodies.

– the procedure is complete for program transformations that corre-
spond to affine mappings of program states; this includes renaming
or exchanging variables, shifting the value of a variable by a constant
offset, or changing the sign of some variable.

We currently do not consider equivalence of programs that use arrays or
heap data structures, but we intend to work on lifting these limitations
in the future. It is, for instance, known that assertions about arrays can
be encoded in Horn clauses [3]. An approach to regression verification of
programs with tree-shaped heap structures can be presumably adapted
from [4].

5 Related work

Regression Verification and variations of it have been subject to many
studies:
Godlin and Strichman introduced the term Regression Verification to
describe the problem of proving the equivalence of two closely related,
successive versions of a program. [4, 5] Their approach is simple, using
only a single inference rule to prove the equivalence of two related func-
tions. The equivalence of whole programs is then shown by applying this
inference rule bottom-up to the call graphs of both programs. A Regres-
sion Verification Tool (RVT) for the C language is provided. All loops are
transformed to recursions before the proof starts. The use of a bounded
model checker as the base of RVT leads to some limitations compared
to an SMT solver, for example no further information about recursive
functions can be encoded.
Hawblitzel et al. [6] provide a framework for the user to encode cou-
pling predicates for a simple While language in Boogie, an intermediate
verification language developed at Microsoft Research.
Another approach is taken by Barthe et al. [2] Instead of regressions their
focus are optimisations. They generalise the self composition commonly
used in non-interference checking to two programs and merge them into
a single product program in a user-specified way.
Verdoolaege et al. [8] have developed an automatic approach for equiva-
lence proofs over static affine programs by matching dependence graphs
of two programs. This enables successfull proofs of complex transfor-
mations on array programs. The approach is implemented for a subset
of ANSI C in the isa tool. The abstraction of arithmetical operations
prevents proving many of our examples.

6 Conclusion and future work

We have extended the reach of regression verification by building on the
foundation of the approach by Godlin and Strichman, making it usable
for a wider range of programs and use cases such as bugfixes. Further-
more, we have developed a new approach that uses invariant inference
techniques to conduct regression proofs fully automatically, while still
allowing for the user to specify the condition of equality if it is asked for.
Our evaluations have shown that a wide range of examples work well with
the new approach presented in this paper. The provided implementation
is made available publicly.
So far in the new approach only integer programs have been considered.
Extending our approach to other constructs like heaps and arrays will
make the tool more powerful and enable more use cases.

References

1. Andrei Alexandrescu. Three optimization tips for C++,
2012. https://www.facebook.com/notes/facebook-engineering/

three-optimization-tips-for-c/10151361643253920.

https://www.facebook.com/notes/facebook-engineering/three-optimization-tips-for-c/10151361643253920
https://www.facebook.com/notes/facebook-engineering/three-optimization-tips-for-c/10151361643253920

2. Gilles Barthe, Juan Manuel Crespo, and César Kunz. Relational ver-
ification using product programs. In Michael Butler and Wolfram
Schulte, editors, FM 2011: Formal Methods - 17th International Sym-
posium on Formal Methods, Limerick, Ireland, June 20-24, 2011. Pro-
ceedings, volume 6664 of Lecture Notes in Computer Science, pages
200–214. Springer, 2011.

3. Isil Dillig, Thomas Dillig, and Alex Aiken. Fluid updates: Beyond
strong vs. weak updates. In Proceedings of the 19th European Confer-
ence on Programming Languages and Systems, ESOP’10, pages 246–
266, Berlin, Heidelberg, 2010. Springer-Verlag.

4. Benny Godlin and Ofer Strichman. Regression verification. In Design
Automation Conference, 2009. DAC’09. 46th ACM/IEEE, pages 466–
471. IEEE, 2009.

5. Benny Godlin and Ofer Strichman. Regression verification: prov-
ing the equivalence of similar programs. Softw. Test., Verif. Reliab.,
23(3):241–258, 2013.

6. C. Hawblitzel, M. Kawaguchi, S. K. Lahiri, and H. Rebêlo. Mutual
summaries: Unifying program comparison techniques. In Proceedings,
First International Workshop on Intermediate Verification Languages
(BOOGIE), 2011.

7. Glenford J. Myers and Corey Sandler. The Art of Software Testing.
John Wiley & Sons, 2004.

8. Sven Verdoolaege, Martin Palkovic, Maurice Bruynooghe, Gerda
Janssens, and Francky Catthoor. Experience with widening based
equivalence checking in realistic multimedia systems. J. Electronic
Testing, 26(2):279–292, 2010.

	Automating Regression Verification

