
Regression Verification:

Status Report

Presentation by Dennis Felsing
within the

Projektgruppe Formale Methoden der Softwareentwicklung

2013-12-11

1 / 22

Introduction

How to prevent regressions in
software development?

2 / 22

Introduction

Formal Verification

Formally prove correctness of software
⇒ Requires formal specification

Regression Testing

Discover new bugs by testing for them
⇒ Requires test cases

3 / 22

Introduction

Formal Verification

Formally prove correctness of software
⇒ Requires formal specification

Regression Testing

Discover new bugs by testing for them
⇒ Requires test cases

Regression Verification

Formally prove there are no new bugs

3 / 22

Project Objectives

1 Develop a tool for Regression Verification for recursive
programs in a simple imperative programming language

2 Case study to evaluate how well our approaches work for
different examples in comparison to other systems

3 Extend the tool to work with more programs and to be more
general

4 / 22

Preliminary Considerations I

Unbounded Integers vs Bit Vectors

• Unbounded Integers don’t overflow

• Bit Vectors can be limited to simplify the problem

• Solution: Support both:
• Proofs are supposed to be over unbounded Integers
• For comparison Bit Vectors can also be used

5 / 22

Preliminary Considerations II

Division by 0

In Z3, division by zero is allowed, but the result is not

specified. Division is not a partial function. Actually, in

Z3 all functions are total, although the result may be

underspecified in some cases like division by zero.

• Possible Solutions:

• Check that there are no divisions by 0
• It could be verified that the result is independent of the result

of division by 0

6 / 22

Preliminary Considerations III

Array Access over Boundaries

• Arrays have infinite size in Z3

• Possibility: Check array boundaries on every access

• Programs can be proven to honor array boundaries

• Solution: Assume programs have been proven to honor array
boundaries

7 / 22

Tool for Regression Verification
Overview

Function f

(val n; ret r)

Function f

without recursions

Static Single
Assignment Sf

Function g

(val x ; ret y)

Function g

without recursions

Static Single
Assignment Sg

(n = x ∧ Sf ∧ Sg) → r = y

Valid / Invalid

Equivalent?

Uninterpreted Functions

SMT Solver

8 / 22

Tool for Regression Verification

Formally prove there are no new bugs

• Goal: Proving the equivalence of two closely related programs

• No formal specification or test cases required

• Instead use old program version

• Make use of similarity between programs

9 / 22

Tool for Regression Verification

Formally prove there are no new bugs

• Goal: Proving the equivalence of two closely related programs

• No formal specification or test cases required

• Instead use old program version

• Make use of similarity between programs

i n t gcd1 (i n t a , i n t b) {
i n t g = 0 ;
i f (b == 0) {

g = a ;
} e l s e {

a = a % b ;
g = gcd1 (b , a) ;

}
return g ;

}

i n t gcd2 (i n t x , i n t y) {
i n t z = x ;

i f (y > 0) {

z = gcd2 (y , z % y) ;
}
return z ;

}
9 / 22

Uninterpreted Functions
Overview

Function f

(val n; ret r)

Function f

without recursions

Static Single
Assignment Sf

Function g

(val x ; ret y)

Function g

without recursions

Static Single
Assignment Sg

(n = x ∧ Sf ∧ Sg) → r = y

Valid / Invalid

Equivalent?

Uninterpreted Functions

SMT Solver

10 / 22

Uninterpreted Functions

• Given the same inputs an Uninterpreted Function always
returns the same outputs.

• Motivation: Proof by Induction, to prove f (n) = g(n) assume
f (n − 1) = g(n − 1)

i n t gcd1 (i n t a , i n t b) {
i n t g = 0 ;
i f (b == 0) {

g = a ;
} e l s e {

a = a % b ;

g = U (b , a) ;
}
return g ;

}

i n t gcd2 (i n t x , i n t y) {
i n t z = x ;

i f (y > 0) {

z = U (y , z % y) ;
}
return z ;

}

11 / 22

Conversion of Programs to Formulae
Overview

Function f

(val n; ret r)

Function f

without recursions

Static Single
Assignment Sf

Function g

(val x ; ret y)

Function g

without recursions

Static Single
Assignment Sg

(n = x ∧ Sf ∧ Sg) → r = y

Valid / Invalid

Equivalent?

Uninterpreted Functions

SMT Solver

12 / 22

Conversion of Programs to Formulae I

General idea

• Walk Abstract Syntax Tree of both programs

• Convert every SimPL construct to SMT formula:

i n t x = y ; ⇒
de c l a r e−fun x 0 () I n t
a s s e r t (x 0 = y i)

...

i f (y) {
x = b ;

} e l s e {
x = c ;

}

⇒

a s s e r t (x i = b)
a s s e r t (x (i +1) = c)
a s s e r t (x (i +2) = (i t e y

x i x (i +1))) ; Phi node

• Use new variable for every assignment

13 / 22

Conversion of Programs to Formulae II

Regression Verification

• Uninterpreted Functions:

a s s e r t (f o r a l l ((u I n t) (v I n t)
((gcd1 u v) = (gcd2 u v))))

• Proof f = g :

a s s e r t (not (g c d 1 r e s u l t = g c d 2 r e s u l t))
check−s a t
get−model
e x i t

⇒ Objective “Regression Verification proofs”: Done

14 / 22

Case Study

Done

• Collect examples: Papers, Refactoring Rules, ...

• 51 program pairs so far

Planned

• Framework for testing them

• Check how well extensions work

• More (interesting) examples

⇒ Objective “Case Study”: Work in Progress

15 / 22

Convert Loops to Recursions

Idea

• Convert every loop to a new recursive function

• Handling multiple loop variables: Return a tuple

whi le (x < 10) {
y = y + x ;
x = x − 1 ;

}

(x , y) = loop (x , y) ;
...

t u p l e l oop (i n t x , i n t y) {
i f (x < 10) {

y = y + x ;
x = x − 1 ;
(x , y) = loop (x , y) ;

}
return (x , y) ; }Initial work

• Added tuples to SimPL grammar and AST

16 / 22

Function Inlining

Idea

• Specify how often a function call is inlined:

y = f (x) i n l i n e 3 ;

• Same for loops (converted to functions):

whi le (x < y) i n l i n e 5 {
z ;

}

• Possibility later: Inlining strategies

Initial work

• Modified grammar to support inlining

17 / 22

Abstraction Refinement I

• Recursive Functions are the main problem

• Two ways of dealing with them:

Most general abstraction

• Classical Regression Verification approach

• Uninterpreted functions

• ∀x : f (x) = g(x)

• No further information about the functions

⇒ Only works when the function bodies are equivalent

18 / 22

Abstraction Refinement II

No abstraction

• Give recursive definition:

f o r a l l x . f (n) =
l e t r0 = 0

r1 = n
r2 = f (n−1)
r3 = n + r2
r4 = i t e (n <= 1 , r1 , r3)

i n r4

• Experiments for a few simple functions

⇒ Only works when the function bodies differ for finite

number of inputs

19 / 22

Abstraction Refinement III

Problem: Find an abstraction inbetween

CEGAR Loop

• Counter Example Guided Abstraction Refinement

• Start with simple over-approximation

• Extract patterns from counter examples

• Refine Abstraction

• Repeat if proof still fails

20 / 22

Abstraction Refinement IV

Problem: Find an abstraction inbetween

Horn Clauses

• (p ∧ q ∧ · · · ∧ t) → u

• Postcondition PC is true after recursive call

• r = f (n) → PC (n, r)

• Solver figures out Postcondition on its own
(e.g. using CEGAR)

21 / 22

Summary

Regression Verification

• Prove that two similar programs are equivalent

• Better chance of being adopted than Formal Verification

• More powerful than Regression Testing

Project Status

1 Develop Regression Verification tool:
• Basic tool: Done
• Loops to Recursions: WIP
• Function Inlining: WIP

2 Case study to compare approaches: WIP

3 Extend tool: Planning and Experimentation

22 / 22

	Work done

