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Introduction

How to prevent regressions in
software development?
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Introduction

Formal Verification

Formally prove correctness of software
⇒ Requires formal specification

Regression Testing

Discover new bugs by testing for them
⇒ Requires test cases
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Project Objectives

1 Develop a tool for Regression Verification for recursive
programs in a simple imperative programming language

2 Case study to evaluate how well our approaches work for
different examples in comparison to other systems

3 Extend the tool to work with more programs and to be more
general
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Preliminary Considerations I

Unbounded Integers vs Bit Vectors

• Unbounded Integers don’t overflow

• Bit Vectors can be limited to simplify the problem

• Solution: Support both:
• Proofs are supposed to be over unbounded Integers
• For comparison Bit Vectors can also be used
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Preliminary Considerations II

Division by 0

In Z3, division by zero is allowed, but the result is not

specified. Division is not a partial function. Actually, in

Z3 all functions are total, although the result may be

underspecified in some cases like division by zero.

• Possible Solutions:

• Check that there are no divisions by 0
• It could be verified that the result is independent of the result

of division by 0
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Preliminary Considerations III

Array Access over Boundaries

• Arrays have infinite size in Z3

• Possibility: Check array boundaries on every access

• Programs can be proven to honor array boundaries

• Solution: Assume programs have been proven to honor array
boundaries
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Tool for Regression Verification
Overview

Function f

(val n; ret r)

Function f

without recursions

Static Single
Assignment Sf

Function g

(val x ; ret y)

Function g

without recursions

Static Single
Assignment Sg

(n = x ∧ Sf ∧ Sg ) → r = y

Valid / Invalid

Equivalent?

Uninterpreted Functions

SMT Solver
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Tool for Regression Verification

Formally prove there are no new bugs

• Goal: Proving the equivalence of two closely related programs

• No formal specification or test cases required

• Instead use old program version

• Make use of similarity between programs
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Tool for Regression Verification

Formally prove there are no new bugs

• Goal: Proving the equivalence of two closely related programs

• No formal specification or test cases required

• Instead use old program version

• Make use of similarity between programs

i n t gcd1 ( i n t a , i n t b ) {
i n t g = 0 ;
i f ( b == 0) {

g = a ;
} e l s e {

a = a % b ;
g = gcd1 (b , a ) ;

}
return g ;

}

i n t gcd2 ( i n t x , i n t y ) {
i n t z = x ;

i f ( y > 0) {

z = gcd2 ( y , z % y ) ;
}
return z ;

}
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Uninterpreted Functions
Overview
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Uninterpreted Functions

• Given the same inputs an Uninterpreted Function always
returns the same outputs.

• Motivation: Proof by Induction, to prove f (n) = g(n) assume
f (n − 1) = g(n − 1)

i n t gcd1 ( i n t a , i n t b ) {
i n t g = 0 ;
i f ( b == 0) {

g = a ;
} e l s e {

a = a % b ;

g = U (b , a ) ;
}
return g ;

}

i n t gcd2 ( i n t x , i n t y ) {
i n t z = x ;

i f ( y > 0) {

z = U ( y , z % y ) ;
}
return z ;

}
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Conversion of Programs to Formulae
Overview

Function f

(val n; ret r)

Function f

without recursions

Static Single
Assignment Sf

Function g

(val x ; ret y)

Function g

without recursions

Static Single
Assignment Sg

(n = x ∧ Sf ∧ Sg ) → r = y

Valid / Invalid

Equivalent?

Uninterpreted Functions

SMT Solver
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Conversion of Programs to Formulae I

General idea

• Walk Abstract Syntax Tree of both programs

• Convert every SimPL construct to SMT formula:

i n t x = y ; ⇒
de c l a r e−fun x 0 ( ) I n t
a s s e r t ( x 0 = y i )

...

i f ( y ) {
x = b ;

} e l s e {
x = c ;

}

⇒

a s s e r t ( x i = b )
a s s e r t ( x ( i +1) = c )
a s s e r t ( x ( i +2) = ( i t e y

x i x ( i +1))) ; Phi node

• Use new variable for every assignment
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Conversion of Programs to Formulae II

Regression Verification

• Uninterpreted Functions:

a s s e r t ( f o r a l l ( ( u I n t ) ( v I n t )
( ( gcd1 u v ) = ( gcd2 u v ) ) ) )

• Proof f = g :

a s s e r t ( not ( g c d 1 r e s u l t = g c d 2 r e s u l t ) )
check−s a t
get−model
e x i t

⇒ Objective “Regression Verification proofs”: Done
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Case Study

Done

• Collect examples: Papers, Refactoring Rules, ...

• 51 program pairs so far

Planned

• Framework for testing them

• Check how well extensions work

• More (interesting) examples

⇒ Objective “Case Study”: Work in Progress
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Convert Loops to Recursions

Idea

• Convert every loop to a new recursive function

• Handling multiple loop variables: Return a tuple

whi le ( x < 10) {
y = y + x ;
x = x − 1 ;

}

( x , y ) = loop ( x , y ) ;
...

t u p l e l oop ( i n t x , i n t y ) {
i f ( x < 10) {

y = y + x ;
x = x − 1 ;
( x , y ) = loop ( x , y ) ;

}
return ( x , y ) ; }Initial work

• Added tuples to SimPL grammar and AST
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Function Inlining

Idea

• Specify how often a function call is inlined:

y = f ( x ) i n l i n e 3 ;

• Same for loops (converted to functions):

whi le ( x < y ) i n l i n e 5 {
z ;

}

• Possibility later: Inlining strategies

Initial work

• Modified grammar to support inlining
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Abstraction Refinement I

• Recursive Functions are the main problem

• Two ways of dealing with them:

Most general abstraction

• Classical Regression Verification approach

• Uninterpreted functions

• ∀x : f (x) = g(x)

• No further information about the functions

⇒ Only works when the function bodies are equivalent
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Abstraction Refinement II

No abstraction

• Give recursive definition:

f o r a l l x . f ( n ) =
l e t r0 = 0

r1 = n
r2 = f (n−1)
r3 = n + r2
r4 = i t e ( n <= 1 , r1 , r3 )

i n r4

• Experiments for a few simple functions

⇒ Only works when the function bodies differ for finite

number of inputs
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Abstraction Refinement III

Problem: Find an abstraction inbetween

CEGAR Loop

• Counter Example Guided Abstraction Refinement

• Start with simple over-approximation

• Extract patterns from counter examples

• Refine Abstraction

• Repeat if proof still fails
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Abstraction Refinement IV

Problem: Find an abstraction inbetween

Horn Clauses

• (p ∧ q ∧ · · · ∧ t) → u

• Postcondition PC is true after recursive call

• r = f (n) → PC (n, r)

• Solver figures out Postcondition on its own
(e.g. using CEGAR)
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Summary

Regression Verification

• Prove that two similar programs are equivalent

• Better chance of being adopted than Formal Verification

• More powerful than Regression Testing

Project Status

1 Develop Regression Verification tool:
• Basic tool: Done
• Loops to Recursions: WIP
• Function Inlining: WIP

2 Case study to compare approaches: WIP

3 Extend tool: Planning and Experimentation

22 / 22


	Work done

